
Mixed Models with R:
Non-Linear Models

Asymptotic Functions of Time

ICPSR 2017 at York University

Georges Monette

random@yorku.ca

mailto:random@yorku.ca

2

2

3

3

4

4

5

5

6

6

7

7

8

Modeling individual trajectories

A good strategy in longitudinal data analysis is to start by building a
plausible model for individual trajectories even if there isn't enough
data from any one individual to actually fit the model. If the data are
unbalanced and you are willing to assume that the between-subject
effect is close to the within-subject effect, then the estimation of
individual trajectories 'borrows strength' from the between-subject
model.

Within the limits imposed by sample size, we try to construct a
model that:
1. captures the main theoretical properties of the phenomenon,
2. preferably has interpretable parameters

8

9

To experiment with your model don't hesitate to simulate. Just create
some plausible data with locator and play with models.
Make an emply plotting surface, click to create some xy data, give
the columns the names you want:

plot(0,0, xlim = c(0,800),
 ylim = c(85,105), type = 'n')
iqsim.ex <- locator(10 , type = 'p')
iqsim.ex
iqsim.ex <- as.data.frame(iqsim.ex)
iqsim.ex
names(iqsim.ex) <- c('days','iq')
iqsim.ex <- iqsim.ex[
 order(iqsim.ex$days),]

9

10

However, we'll use precooked data:

> data(iqsim) # from spida
> iqsim
 days iq
1 30.9375 89.07734
2 73.1250 91.74573
4 101.2500 94.12407
3 104.3750 91.28166
5 198.1250 96.73445
6 249.6875 96.03835
7 249.6875 96.44441
8 285.6250 97.89462
9 323.1250 97.72059
10 335.6250 98.47470

10

11

plot(iq ~ days ,
iqsim, pch = 16, xlim = c(0,800),
ylim = c(85,105))

11

12

Fitting a line:

> fit.lin <- lm (iq ~ days, iqsim)
> summary(fit.lin)
.

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.540151 0.759021 117.97 2.98e-14 ***
days 0.027739 0.003429 8.09 4.03e-05 ***

Residual standard error: 1.133 on 8 degrees of freedom
Multiple R-squared: 0.8911, Adjusted R-squared: 0.8775
F-statistic: 65.45 on 1 and 8 DF, p-value: 4.029e-05

12

13

Graphing a fitted line
We would like to show the predicted value over the whole range of
days in the graph, not just the values that were observed. With a
straight line we could just use abline. With curved lines we will
need a different approach. So we create a prediction data frame, with
the one predictor variable.

> pred <- expand.grid(days = seq(-20, 850, 1))
> pred$iq.lin <- predict(fit.lin, pred)
> some(pred)
 days iq.lin
94 73 91.56510
137 116 92.75788
203 182 94.58865
.
746 725 109.65094
753 732 109.84511
> lines(iq.lin ~ days, pred,
 col = 'blue', lwd = 2)

13

14

14

15

Doesn't make much sense!
Let's try a quadratic
> fit.quad <- lm(iq ~ days + I(days ^2), iqsim)
> summary(fit.quad)
. . . .
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.780e+01 1.170e+00 75.020 1.97e-11 ***
days 5.506e-02 1.535e-02 3.586 0.0089 **
I(days^2) -7.324e-05 4.036e-05 -1.815 0.1124

Residual standard error: 0.9988 on 7 degrees of freedom
Multiple R-squared: 0.9259, Adjusted R-squared: 0.9048
F-statistic: 43.75 on 2 and 7 DF, p-value: 0.0001106

> pred$iq.quad <- predict(fit.quad, pred)
> lines(iq.quad ~ days , pred, col = 'red', lwd = 2)
>

15

16

16

17

With a quadratic, what goes up must come down … the same way it
went up! Maybe a cubic makes more sense:

17

18

Exasperated we decided to go all the way with a polynomial of
degree 8:

> p8 <- function(x) poly(x, 8, raw = TRUE)
> fit.high <- lm(iq ~ p8(days), iqsim)
> summary(fit.high) # look at R-Squared!!
. . . .
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.314e+03 1.665e+02 7.889 0.0803 .
p8(days)1 -9.135e+01 1.238e+01 -7.381 0.0857 .
p8(days)2 2.548e+00 3.436e-01 7.414 0.0854 .
p8(days)3 -3.596e-02 4.829e-03 -7.447 0.0850 .
p8(days)4 2.878e-04 3.846e-05 7.482 0.0846 .
p8(days)5 -1.362e-06 1.811e-07 -7.518 0.0842 .
p8(days)6 3.777e-09 4.999e-10 7.555 0.0838 .
p8(days)7 -5.674e-12 7.476e-13 -7.590 0.0834 .
p8(days)8 3.567e-15 4.679e-16 7.624 0.0830 .

Residual standard error: 0.2871 on 1 degrees of freedom
Multiple R-squared: 0.9991, Adjusted R-squared: 0.9921
F-statistic: 142.8 on 8 and 1 DF, p-value: 0.06463

An almost perfect fit!

Thanks to John, this option is available

18

19

19

20

 A perfect fit to the data

 But a very poor fit to the 'population'

 An example of overfitting and loss of validity

The remedy:

Use a model that captures characteristics of the process under study.
Don't just use a high order polynomial to get a good empirical fit.

Presumably, under typical circumstances, recovery reaches a plateau
after a while. We need a model that rises at first and then flattens
out.

20

21

Exponential growth or decay

21

23

22

24

Exponential decay

23

26

24

27

Exponential asymptotic growth

25

29

26

32

27

36

28

51

29

54

30

55

Using half-recovery time instead (half-life)

31

60

32

3

Fitting a non-linear growth curve model:

 2

0 1 exp() independent (0,)t i i iY T N        

Later we will use nlme for longitudinal data with more that one
subject. With just one subject we use 'nls', which is to 'nlme' what
'lm' is to 'lme'.

The syntax for fitting a non-linear model is very similar to that for a
linear model with three differences.

1. With a linear model we only need to specify the predictors.
We don't need to say anything about the parameters because
it is understood that there is exactly one parameter for each
regressor (some predictors will have more than one regressor)
and each parameter multiplies its regressor. The non-linear
model formula for a non-linear model needs to specify both

33

4

the parameters and the regressor.

2. The algorithm for fitting is iterative and needs starting values
which you generally need to supply.

3. In non-linear mixed effects models – with nlme – parameters
in the non-linear model are themselves be modeled through
linear models potentially based on other predictors. This
allows the non-linear model to be simpler since it only needs
to capture the essentially non-linear aspects of the model.
Another advantage is that this formulation is easier to fit
numerically, i.e. it's less work for the computer.

34

5

Growth curve model:

   2

0 1 exp i.i.d. (0,)i i i iY T N        

Non-linear model formula:

 iq ~ b0 + b1*exp(-alpha*days)

The formula contains references to data: iq, days that will be
found in the iq data frame.

Parameters: b0, b1, alpha that need starting values.

Finding starting values: best way: sketch and undertand your model
and infer plausible parameters.

35

6

From graphs I would guess:

list(b0 = 100, b1 = -20, alpha = 0.005)

How did we get these values?

b0 is the long-run level, b1 is the relative deficit at time 0,
alpha is the daily proportion of lost iq recovered. It looks like it
might take 100 days for a half recovery of 0.5, so dividing by 100
suggests roughly 0.005 per day.

Call in R:

 nls(iq ~ b0 + b1*exp(-alpha*days), iqsim,
 start = list(b0 = 100, b1 = -20,

alpha = 0.005))

36

7

R code and output:

> fit.nl <-nls (iq ~ b0 + b1*exp(-a*days), iqsim,
+ start= list(b0 = 100, b1 = -30, a = .01))
> summary(fit.nl)

Formula: iq ~ b0 + b1 * exp(-a * days)

Parameters:
 Estimate Std. Error t value Pr(>|t|)
b0 99.906891 2.393470 41.741 1.18e-09 ***
b1 -12.847352 1.620520 -7.928 9.66e-05 ***
a 0.005820 0.002956 1.969 0.0897 .

Residual standard error: 0.9738 on 7 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 7.917e-06

37

9

> pred$iq.nl <- predict(fit.nl, pred)
> plot(iq ~ days , iqsim, pch = 16,
+ xlim = c(0,800), ylim = c(85,105))
> lines(iq.nl ~ days , pred, col = 'black', lwd = 2)
> coef(fit.nl)
 b0 b1 a
 99.906891397 -12.847351723 0.005819758
> abline(h = coef(fit.nl)[1], col = 'gray', lwd = 2)

38

10

Asymptotic growth curve:

39

8

Polynomials:

40

11

Alternative: Transforming Time
What difference does it make if we turn our non-linear model into a
linear model by transforming time:
 ttime exp{ 0.0056 days}  
As days , ttime(days) 0 , as days 0, ttime(days) 1 

> ttime <- function(x) exp(-0.0058 * x)
> fit.lin <- lm(iq ~ ttime(days), iqsim)
> summary(fit.lin)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 99.9224 0.5628 177.54 1.13e-15
ttime(days) -12.8535 1.2508 -10.28 6.92e-06

Residual standard error: 0.9109 on 8 degrees of freedom
Multiple R-squared: 0.9296, Adjusted R-squared: 0.9208
F-statistic: 105.6 on 1 and 8 DF, p-value: 6.922e-06

41

12

Compare coefficients from tranformed fit and from non-linear fit:
Coefficients: (transformed)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 99.9224 0.5628 177.54 1.13e-15
ttime(days) -12.8535 1.2508 -10.28 6.92e-06

Parameters: (non-linear)
 Estimate Std. Error t value Pr(>|t|)
b0 99.906891 2.393470 41.741 1.18e-09 ***
b1 -12.847352 1.620520 -7.928 9.66e-05 ***
a 0.005820 0.002956 1.969 0.0897 .

● The estimated parameters are almost the same but the linear fit using transformed time

reports much smaller SEs than the non-linear fit.
● Why? The linear fit is not taking into account the uncertainty stemming from the fact that a is

not known.
● Note that the biggest difference in SE occurs for the asymptote. Unless you have data well into

the asymptote – where the curve gets very flat – the estimate of the asymptote depends heavily
on the estimate of curvature.

● When reviewing work that used transformations consider whether a non-linear approach might
have been more honest. Note that the transformation is free if it is an intentional change in the
scale: e.g. log(Salary).

42

2

Summary:

We fit an asymptotic non-linear growth curve to PIQ as a function of Days
post Coma.

We then try the same model with VIQ in the hope of comparing the two
models, but the VIQ model does not converge. We explore causes and
remedies of non convergence and eventually decide on a mild
reparametrization. It works! We then use the same model on PIQ and
compare the two models.

These two models are 'univariate' multivariate models, looking at one
response at a time. To get p-values in the comparison of the models for the
two responses, we need to do more. One possibility is bootstrapping which
we don't explore. The other is to exploit multilevel (with 3 levels)
modeling in nlme to fit something close to (but not exactly) a multivariate
model. This is done at the end of the Lab script.

43

13

Recovery of post­coma IQ

44

14

First 3 years:

45

15

46

16

Using nlme
The nlme model is specified like a hierarchical model, except that
you can mix variable levels.
Example:

 nlme(piq ~ b0 + b1*exp(-a*dayspc),
 data = iq,
 fixed = list(b0 ~ 1+sqrt(dcoma),
 b1 ~ 1,
 a ~ 1),
 random = list(id = b0 ~ 1),
 start = list(fixed = c(
 100, 0,-20.,.05)),
 control = list(maxIter = 100,

returnObject = TRUE),
 verbose = T)

47

19

The code one line at a time:

piq ~ b0 + b1*exp(-a*dayspc)

A non-linear model formula with regressors and parameters. In
this example, it's the Level 1 model. In general, you could have
Level 2 regressors in this model. If you want to use a factor you
need to use it through its dummies: e.g.

b.sex * (sex=="Female")
where b.sex is the parameter multiplying the indicator for
Female.

data = iq,
 data frame as usual

48

20

fixed = list(

b0 ~ 1+sqrt(dcoma),
 b1 ~ 1+sqrt(dcoma),,
 a ~ 1)

A list of linear model formulas, one for each parameter. Here,
the parameter a is assumed to have the same value across the
population, b0 and b1 are assumed to depend through a linear
model on sqrt(dcoma). This transformation incorporates an
assumption that an extra day of coma after, say, 3 days has a
greater impact than an extra day after 50 days. The sqrt
transformation was chosen by examining visual plots. It is
somewhat arbitrary. Also it is an oversimplification to assume
that a is a constant across the population.

49

21

random = list(id = list(b0 ~ 1, b1 ~ 1)

Specify the parameters that are assumed to vary randomly from
id to id. Note that b0 is the asymptotic level but it is also a
constant added to all observations.

50

22

start = list(fixed =

c(100, -10, -20.,-1,.05)))
This is the challenging part that rewards a good understanding of
the paramters of the model. Recall the fixed portion of the model
above:

fixed = list(
b0 ~ 1+sqrt(dcoma),

 b1 ~ 1+sqrt(dcoma),,
 a ~ 1)

The starting values are listed in the same order as the regressors
of the 'fixed' portion of the model. Generally, it is good enough to
have plausible starting values. Draw a sketch and make educated
guesses Here, our starting model is:
 b0 = 100 – 10 * sqrt(dcoma)
 b1 = –20 – 1 * sqrt(dcoma)
 a = 0.05

51

23

control = list(maxIter = 100,

returnObject = TRUE)

Increases the default number of iterations from 50 to 100 and
returns the last fit even if there is no convergence. We'll see how
to use this shortly.

verbose = T

This shows information on each PNLS and LME step. Type
Ctrl-W in the R console to get unbuffered output and you can
watch a frequently exciting show.

52

24

Fitting the model:

> fit.nlme <- nlme(
+ piq ~ b0 + b1*exp(-a*dayspc),
+ data = iq,
+ fixed = list(
+ b0 ~ 1 + sqrt(dcoma) ,
+ b1 ~ 1 + sqrt(dcoma) ,
+ a ~ 1),
+ random = list(id = list(b0 ~ 1, b1~ 1)),
+ control = list(maxIter = 200, returnObject = T),
+ start = list(
+ fixed = c(100, -10, -10, 0,.05)),
+ control = list(maxIter = 100, returnObject = T),
+ verbose = TRUE)

53

25

. . . . [Omitting 0utput on Iterations 1 to 3]
**Iteration 4
LME step: Loglik: -1287.679 , nlm iterations: 1
reStruct parameters:
 id1 id2 id3
 1.515913 0.949715 23.921793

PNLS step: RSS = 15018.94
 fixed effects:97.0948 -1.24521 -11.1453 -3.24829 0.00825027
 iterations: 7

Convergence:
 fixed reStruct
1.312661e-06 7.021607e-04

> summary(fit.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
 Model: piq ~ b0 + b1 * exp(-a * dayspc)
 Data: iq
 AIC BIC logLik
 2593.358 2627.577 -1287.679

This was pretty quick convergence

54

26

Random effects:
 Formula: list(b0 ~ 1, b1 ~ 1)
 Level: id
 Structure: General positive-definite, Log-Cholesky parametrization
 StdDev Corr
b0.(Intercept) 13.769293 b0.(I)
b1.(Intercept) 2.605835 -0.994
Residual 6.736055

Fixed effects: list(b0 ~ 1 + sqrt(dcoma), b1 ~ 1 +
sqrt(dcoma), a ~ 1)
 Value Std.Error DF t-value p-value
b0.(Intercept) 97.09476 2.036582 127 47.67536 0.0000
b0.sqrt(dcoma) -1.24521 0.480486 127 -2.59157 0.0107
b1.(Intercept) -11.14530 3.208072 127 -3.47414 0.0007
b1.sqrt(dcoma) -3.24829 1.076749 127 -3.01676 0.0031
a 0.00825 0.001651 127 4.99579 0.0000

 Correlation:
 b0.(I) b0.s() b1.(I) b1.s()
b0.sqrt(dcoma) -0.724
b1.(Intercept) -0.596 0.463
b1.sqrt(dcoma) 0.463 -0.455 -0.789
a -0.309 0.013 0.092 -0.380

worries me a bit
I might try to reparametrize

55

27

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
-3.332408193 -0.365688335 0.009002275 0.382738703 2.303114344

Number of Observations: 331
Number of Groups: 200

> An interesting calculation:

Between subject SD of 'true' IQ 13.769
Within subject between test SD of IQ 6.736
Population SD of IQ 2 213.769 6.736 15.329 
Test-retest reliability of IQ

Variance in True Score

Variance of Observed Score


2

2

13.769 0.807
15.328



56

17

How does fitting work?

 See Pinheiro and Bates (2000) and Lindstrom and Bates (1990)
for a description. It's a clever blend of available tools. Bates and
Watts (1988) Non-linear regession analysis and its applications
deals with non-linear models for independent data which can be
adapted to situation where the variance-covariance is known.
So we have we have tools for non-linear models when the variance
is known. And we have tools for linear mixed models (lme). If we
have estimates of parameters in a non-linear model we can construct
an approximating linear model.

The algorithm keeps repeating 2 steps until convergence:

1) PNLS step: Given an estimate of G and R, estimate fixed
parameters and random effects using a penalized non-linear least-
squares algorithm.

57

18

2) LME step: Given estimates of fixed parameters and random
effects, construct an approximating linear model and estimate G and
R with lme.

Keep repeating (1) and (2) until the estimates don't change much.

58

28

Some diagnostics for PIQ
> plot(fit.nlme, resid(. , type = 'p') ~ fitted(.),
+ id = .05)

59

29

> plot(fit.nlme, sqrt(abs(resid(. ,type='p')))
+ ~fitted(.), id = .05)

> plot(ranef(fit.nlme)) # output omitted

60

30

> pairs(ranef(fit.nlme))

This plot shows the near singularity of the G matrix shown earlier in
the strong correlation between b0 and b1. It suggests that long-term
recovery level, possibly related to pre-trauma intelligence does not
confer so large a benefit in the early stages of recovery.

61

31

Fitting VIQ

> fit.nlme.viq <- nlme(
+ viq ~ b0 + b1*exp(-a*dayspc),
+ data = iq,
+ fixed = list(b0 ~ 1 + sqrt(dcoma) ,
+ b1 ~ 1 + sqrt(dcoma) ,
+ a ~ 1),
+ random = list(id =
+ list(b0 ~ 1, b1~ 1)),
+ start = list(
+ fixed = c(100, -.3, -10, -5,.01)),
+ control = list(maxIter = 100,
+ returnObject = T),
+ verbose = T)

62

32

**Iteration 1

LME step: Loglik: -1246.109 , nlm iterations: 20
reStruct parameters:
 id1 id2 id3
-0.31704425 -0.03919651 1.58004210

PNLS step: RSS = 8190.372
 fixed effects:98.3784 -0.398053 -11.1171 -3.81443 0.02529
 iterations: 7

Convergence:
 fixed reStruct
0.6045864 0.3340419

Then it repeats:

**Iteration 2
LME step: Loglik: -1242.047 , nlm iterations: 10
reStruct parameters:
 id1 id2 id3
-0.6005839 -1.1484260 0.3314853

PNLS step: RSS = 29302.31

We hope these numbers
will get very small

63

33

 fixed effects:93.3904 -0.500735 -2.79404 -5.93326 0.0384955
 iterations: 7

Convergence:
 fixed reStruct
2.978855 2.355074

Much, much later:

**Iteration 97
LME step: Loglik: -1223.248 , nlm iterations: 11
reStruct parameters:
 id1 id2 id3
-0.3076645 -0.9642632 0.4746019

PNLS step: RSS = 13520.03
 fixed effects:96
 iterations: 7

Convergence:
 fixed reStruct
0.6185455 1.3370712

64

34

**Iteration 98
LME step: Loglik: -1239.934 , nlm iterations: 11
reStruct parameters:
 id1 id2 id3
-0.6920771 -0.9315449 0.3989076

PNLS step: RSS = 9035.715
 fixed effects:98.3663 -0.345367 -8.12821 -2.46351 0.0134667
 iterations: 7

Convergence:
 fixed reStruct
1.619486 0.572147

**Iteration 99
LME step: Loglik: -1223.284 , nlm iterations: 11
reStruct parameters:
 id1 id2 id3
-0.3084674 -0.9647008 0.4741239

PNLS step: RSS = 13512.85
 fixed effects:96.0224 -0.381974 -9.02973 -5.45431 0.0352635
 iterations: 7

These are the estimated fixed
effects at iteration 98

65

35

Convergence:
 fixed reStruct
0.6181109 1.3332673

**Iteration 100
LME step: Loglik: -1239.936 , nlm iterations: 11
reStruct parameters:
 id1 id2 id3
-0.6921102 -0.9316034 0.3988804

PNLS step: RSS = 9033.863
 fixed effects:98.3667 -0.345443 -8.13618 -2.46378 0.0134763
 iterations: 7

Convergence:
 fixed reStruct
1.6167060 0.5714619
Warning message:
In nlme.formula(viq ~ b0 + b1 * exp(-a * dayspc), data = iq, fixed
= list(b0 ~ :
 Maximum number of iterations reached without convergence

Our model didn't converge.

These numbers are just
bouncing around and not
getting smaller

Have a close look at what these
number have been doing for the
past few iterations

66

36

What to do?

Looking carefully at the output we notice that:
1) The convergence criteria are not slowly getting smaller, they're

bouncing around, and
2) Some of the fixed parameters are stuck in an oscillation of period

2.

Possible actions:
1) Increase maxIter and come back much later. In this case it won't

help,
2) Simplify the model, particularly the RE model. Here we could –

and it would work – but it would require making assumptions we
would prefer to avoid for now.

3) Consider whether the model is well identified. Are there
parameters whoses estimates are far from expected? Or that are
constantly changing in a given direction as iterations increase?

67

37

3) When the process is stuck in a cycle, as it is here, which
parameters oscillate and how do they oscillated together? Try to
visualize what this implies about the fitted surface. A cycle can
mean that the leverage and residuals of some points oscillate
from iteration to iteration. Such points pull the fit towards
themselves in one iteration but in the new fit they lose leverage
and let go of the fitted surface for the next iteration. This can't
happen with OLS because leverage does not depend on the fit.
But the linear approximation in non-linear models depends on the
previous fit so leverage can change from one fit to the next. The
points involved tend to be outliers.

Finding problematic points:

1) Use maxIter to stop the iteration at each point in the cycle, with a

2-cycle, use an odd iteration and an even iteration. Save the fitted
object in each case. Plot the residuals of one fit against the

68

38

residuals of the other. The points with very different residuals are
likely to be the culprits. You can also compare the fits to see how
each fit attempts to approximate the data.

2) Use your knowledge of the data to isolate some known outliers.

We note that the distribution of dcoma is highly skewed and we'll
try dropping anyone with dcoma > 100. Note dcoma is a between
subject variable and extreme values are likely to have high leverage.
With the asymptotic model for dayspc, influence may be reversed
with small values being very influential and large values less so.
After further experimenting we also see that b1, the deficit at
dayspc = 0 is bound with the estimate of a. A larger value for
a produces a very negative value of b1. This leads us to the
realization that attempting to estimate deficit immediately upon
arousal is not feasible since there is little IQ data that early. We can
easily move the origin to say one month after arousal by simply

69

39

changing dayspc to dayspc – 30 in the non-linear formula. If
this works we can do the same for PIQ to have comparable results.

> fit.nlme.viq2 <-nlme(viq ~ b0 + b1*exp(-a*(dayspc-30)),
+ data = iq,
+ fixed = list(b0 ~ 1 + sqrt(dcoma) ,
+ b1 ~ 1 + sqrt(dcoma) ,
+ a ~ 1),
+ random = list(id = list(b0 ~ 1, b1~ 1)),
+ start = list(
+ fixed = c(100, -.3, -10, 0,.3)),
+ control = list(maxIter = 100, returnObject = T),
+ verbose = T,
+ subset = dcoma < 100)

which converges in 3 iterations:
.

70

40

**Iteration 3
LME step: Loglik: -1225.668 , nlm iterations: 1
reStruct parameters:
 id1 id2 id3
-0.8286352 12.2429072 59.7420069

PNLS step: RSS = 9725.302
 fixed effects:99.2084 -0.561859 -6.79895 -1.87309
0.0214789
 iterations: 7

Convergence:
 fixed reStruct
1.054542e-07 1.588532e-01
>
> summary(fit.nlme.viq2)
Nonlinear mixed-effects model fit by maximum
likelihood

71

41

 Model: viq ~ b0 + b1 * exp(-a * (dayspc - 30))
 Data: iq
 Subset: dcoma < 100
 AIC BIC logLik
 2469.336 2503.363 -1225.668

Random effects:
 Formula: list(b0 ~ 1, b1 ~ 1)
 Level: id
 Structure: General positive-definite, Log-Cholesky
parametrization
 StdDev Corr
b0.(Intercept) 1.254731e+01 b0.(I)
b1.(Intercept) 2.640292e-05 0
Residual 5.478719e+00

72

42

Fixed effects: list(b0 ~ 1 + sqrt(dcoma), b1 ~ 1 +
sqrt(dcoma), a ~ 1)
 Value Std.Error DF t-value p-value
b0.(Intercept) 99.20845 1.7262297 196 57.47117 0.0000
b0.sqrt(dcoma) -0.56186 0.4940133 123 -1.13734 0.2576
b1.(Intercept) -6.79895 2.2442154 123 -3.02954 0.0030
b1.sqrt(dcoma) -1.87309 0.7804948 123 -2.39987 0.0179
a 0.02148 0.0044938 123 4.77971 0.0000

 Correlation:
 b0.(I) b0.s() b1.(I) b1.s()
b0.sqrt(dcoma) -0.777
b1.(Intercept) -0.418 0.332
b1.sqrt(dcoma) 0.312 -0.343 -0.860
a -0.148 -0.057 0.096 -0.058

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
-2.157276598 -0.389534045 0.007514936 0.366479340 1.903012142

Number of Observations: 324

73

43

Number of Groups: 197

We have no evidence of a long-term effect of duration of coma and
only weak evidence of an effect at the end of 30 days.

Refitting PIQ with a similar model:

> fit.nlme.piq2 <-nlme(piq ~ b0 + b1*exp(-a*(dayspc-30)),
+ data = iq,
+ fixed = list(b0 ~ 1 + sqrt(dcoma) ,
+ b1 ~ 1 + sqrt(dcoma) ,
+ a ~ 1),
+ random = list(id = list(b0 ~ 1, b1~ 1)),
+ start = list(
+ fixed = c(100, -.3, -10, 0,.1)),
+ control = list(maxIter = 100, returnObject = T),
+ verbose = T,
+ subset = dcoma < 100)

74

44

which also converges quickly.
> summary(fit.nlme.piq2)
. . . .
Random effects:
 Formula: list(b0 ~ 1, b1 ~ 1)
 Level: id
 Structure: General positive-definite, Log-Cholesky
parametrization
 StdDev Corr
b0.(Intercept) 1.303845e+01 b0.(I)
b1.(Intercept) 1.288991e-04 0.001
Residual 6.640711e+00

Fixed effects: list(b0 ~ 1 + sqrt(dcoma), b1 ~ 1 +
sqrt(dcoma), a ~ 1)
 Value Std.Error DF t-value p-value
b0.(Intercept) 98.45118 2.1594531 123 45.59079 0.0000
b0.sqrt(dcoma) -1.52286 0.5784392 123 -2.63270 0.0096
b1.(Intercept) -10.71808 2.6410052 123 -4.05833 0.0001
b1.sqrt(dcoma) -2.06639 0.8298037 123 -2.49022 0.0141
a 0.00707 0.0014827 123 4.76892 0.0000

75

45

These results contrast interestingly with VIQ.

EXERCISE: Note that b1 has very small variability in both models.
What happens if you refit without a random effect for b1.

Comparison of half­recovery times
1Half-recovery time
ln(2)




IQ  half-recovery time
VIQ 0.02148 67 days
PIQ 0.00707 204 days

EXERCISE: Reparametrize the non-linear model formula to use
half-life instead of IRRR in the model. Are the results consistent?

76

46

Visual comparisons of PIQ and VIQ

windows(height = 7, width = 8.5)

pred <- expand.grid(dcoma = c(0,1,7,16,25,100),
 dayspc = seq(30,365*2,5))
pred$piq <- predict(fit.nlme.piq2, pred, level = 0)
pred$viq <- predict(fit.nlme.viq2, pred, level = 0)

zz <- factor(paste('dcoma =', pred$dcoma))
pred$dcoma.lab <- reorder(zz, pred$dcoma)

td(col = c('blue','red'), lwd = 2)
xyplot(viq + piq ~ dayspc | dcoma.lab, pred, type = 'l',
 ylim = c(60,102),
 lwd = 2, auto.key = list(columns = 2, points = F, lines = T))

77

47

78

48

pred2 <- expand.grid(dcoma = 0:100,
 dayspc = c(30,60,90.180,360,720))
pred2$piq <- predict(fit.nlme.piq2, pred2, level = 0)
pred2$viq <- predict(fit.nlme.viq2, pred2, level = 0)

zz <- factor(paste('dayspc =', pred2$dayspc))
pred2$dayspc.lab <- reorder(zz, pred2$dayspc)

xyplot(viq + piq ~ dcoma | dayspc.lab, pred2, type = 'l',
 ylim = c(60,102),
 lwd = 2,
 auto.key = list(columns = 2, points = F, lines = T))

79

49

80

50

predviq <- expand.grid(dcoma = seq(0,100,10),
 dayspc = seq(30,720,30))
predpiq <- predviq
predviq $ iq <- predict(fit.nlme.viq2, predviq, level = 0)
predpiq $ iq <- predict(fit.nlme.piq2 , predpiq, level = 0)
predpiq$type <- factor("PIQ")
predviq$type <- factor("VIQ")

wireframe(iq ~ dayspc + dcoma | type, Rbind(predpiq, predviq))

Default options and orientation for a wireframe plot:

81

51

82

52

wireframe(iq ~ dcoma + dayspc | type, Rbind(predpiq, predviq),
 scales = list(arrows = F), col = 'blue')

Exchange axes for a more natural presentation of dayspc (Level 1
variable) and dcoma (Level 2)

Suppress arrows and get axis with values and tickmarks.

83

53

84

54

wireframe(iq ~ dcoma + dayspc | type, Rbind(predpiq, predviq),
 scales = list(arrows = F), col = 'blue',
 xlab = 'Coma',
 ylab = 'Days post coma',
 screen = list(z = -65, x = -75))

With the 'screen' parameter, you can control the orientation of the
graph. Here, the z axis is tha vertical axis, the x axis, the horizontal
axis in the surface of the screen and y, the horizontal axis straight
into the screen.

Rotation in the z axis of -65 degrees results in clockwise rotation of
+65 degrees from the top and x-axis rotation of -75, tilts the graph
up by 75 degrees.

85

55

86

56

wireframe(iq ~ dcoma + dayspc , Rbind(predpiq, predviq),
 groups = type,
 scales = list(arrows = F), col = 'blue',
 xlab = 'Coma',
 ylab = 'Days post coma',
 screen = list(z = -65, x = -75),
 auto.key = list(columns=2, lines = T, points = F),
 alpha = .5)

87

57

88

58

See the Non-Linear Lab script for a multivariate model that
compares the parameters for PIQ and VIQ.

89

	Cover4.pdf
	Part_3_Asymptotic_Functions_of_Time
	Cover3.pdf
	Non_Linear_I_SLIDES
	Non_Linear_II_SLIDES

