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Modeling individual trajectories 
 
A good strategy in longitudinal data analysis is to start by building a 
plausible model for individual trajectories even if there isn't enough 
data from any one individual to actually fit the model.  If the data are 
unbalanced and you are willing to assume that the between-subject 
effect is close to the within-subject effect, then the estimation of 
individual trajectories 'borrows strength' from the between-subject 
model. 
 
Within the limits imposed by sample size, we try to construct a 
model that:  
1. captures the main theoretical properties of the phenomenon, 
2. preferably has interpretable parameters   
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To experiment with your model don't hesitate to simulate. Just create 
some plausible data with locator and play with models. 
Make an emply plotting surface, click to create some xy data, give 
the columns the names you want: 
 
 
plot(0,0, xlim = c(0,800),  
      ylim = c(85,105), type = 'n') 
iqsim.ex <- locator( 10 , type = 'p') 
iqsim.ex 
iqsim.ex <- as.data.frame( iqsim.ex ) 
iqsim.ex 
names( iqsim.ex ) <- c('days','iq') 
iqsim.ex <- iqsim.ex[ 
           order(iqsim.ex$days),] 
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However, we'll use precooked data: 
 
> data( iqsim )    # from spida 
> iqsim        
       days       iq 
1   30.9375 89.07734 
2   73.1250 91.74573 
4  101.2500 94.12407 
3  104.3750 91.28166 
5  198.1250 96.73445 
6  249.6875 96.03835 
7  249.6875 96.44441 
8  285.6250 97.89462 
9  323.1250 97.72059 
10 335.6250 98.47470 
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plot( iq ~ days ,  
iqsim, pch = 16, xlim = c(0,800),  
ylim = c(85,105) ) 
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Fitting a line: 
 
> fit.lin <- lm ( iq ~ days, iqsim ) 
> summary( fit.lin ) 
. . . . . 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 89.540151   0.759021  117.97 2.98e-14 *** 
days         0.027739   0.003429    8.09 4.03e-05 *** 
 
 
Residual standard error: 1.133 on 8 degrees of freedom 
Multiple R-squared: 0.8911,     Adjusted R-squared: 0.8775  
F-statistic: 65.45 on 1 and 8 DF,  p-value: 4.029e-05  
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Graphing a fitted line 
We would like to show the predicted value over the whole range of 
days in the graph, not just the values that were observed. With a 
straight line we could just use abline. With curved lines we will 
need a different approach. So we create a prediction data frame, with 
the one predictor variable. 
 
> pred <- expand.grid( days = seq( -20, 850, 1)) 
> pred$iq.lin <- predict( fit.lin, pred ) 
> some( pred ) 
    days    iq.lin 
94    73  91.56510 
137  116  92.75788 
203  182  94.58865 
.  .  .  .  . 
746  725 109.65094 
753  732 109.84511 
> lines( iq.lin ~ days, pred,  
             col = 'blue', lwd = 2) 
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Doesn't make much sense! 
Let's try a quadratic 
>    fit.quad <- lm( iq ~ days + I(days ^2), iqsim) 
>    summary( fit.quad ) 
. . . . 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  8.780e+01  1.170e+00  75.020 1.97e-11 *** 
days         5.506e-02  1.535e-02   3.586   0.0089 **  
I(days^2)   -7.324e-05  4.036e-05  -1.815   0.1124     
 
Residual standard error: 0.9988 on 7 degrees of freedom 
Multiple R-squared: 0.9259,     Adjusted R-squared: 0.9048  
F-statistic: 43.75 on 2 and 7 DF,  p-value: 0.0001106  
 
>    pred$iq.quad <- predict( fit.quad, pred ) 
>    lines( iq.quad ~ days , pred, col = 'red', lwd = 2) 
>  

15



16 

 

16



17 

With a quadratic, what goes up must come down … the same way it 
went up!  Maybe a cubic makes more sense: 
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Exasperated we decided to go all the way with a polynomial of 
degree 8: 
 
>  p8 <- function( x ) poly( x, 8, raw = TRUE) 
>  fit.high <- lm( iq ~ p8( days ), iqsim ) 
>  summary(fit.high)   # look at R-Squared!! 
.  .  .  . 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)  1.314e+03  1.665e+02   7.889   0.0803 . 
p8(days)1   -9.135e+01  1.238e+01  -7.381   0.0857 . 
p8(days)2    2.548e+00  3.436e-01   7.414   0.0854 . 
p8(days)3   -3.596e-02  4.829e-03  -7.447   0.0850 . 
p8(days)4    2.878e-04  3.846e-05   7.482   0.0846 . 
p8(days)5   -1.362e-06  1.811e-07  -7.518   0.0842 . 
p8(days)6    3.777e-09  4.999e-10   7.555   0.0838 . 
p8(days)7   -5.674e-12  7.476e-13  -7.590   0.0834 . 
p8(days)8    3.567e-15  4.679e-16   7.624   0.0830 . 
--- 
Residual standard error: 0.2871 on 1 degrees of freedom 
Multiple R-squared: 0.9991,     Adjusted R-squared: 0.9921  
F-statistic: 142.8 on 8 and 1 DF,  p-value: 0.06463  

An almost perfect fit! 
  

Thanks to John, this option is available 
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 A perfect fit to the data 
 
 But a very poor fit to the 'population' 

 
 An example of overfitting and loss of validity 

 
The remedy: 
 
Use a model that captures characteristics of the process under study. 
Don't just use a high order polynomial to get a good empirical fit. 
 
Presumably, under typical circumstances, recovery reaches a plateau 
after a while.  We need a model that rises at first and then flattens 
out.  
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Exponential growth or decay 
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Exponential decay    
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Exponential asymptotic growth 
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Using half-recovery time instead (half-life) 
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Fitting a non-linear growth curve model: 
 
 2

0 1 exp( )  independent (0, )t i i iY T N          
 
Later we will use nlme for longitudinal data with more that one 
subject. With just one subject we use 'nls', which is to 'nlme' what 
'lm' is to 'lme'. 
 
The syntax for fitting a non-linear model is very similar to that for a 
linear model with three differences. 
  

1. With a linear model we only need to specify the predictors. 
We don't need to say anything about the parameters because 
it is understood that there is exactly one parameter for each 
regressor (some predictors will have more than one regressor) 
and each parameter multiplies its regressor.  The non-linear 
model formula for a non-linear model needs to specify both 
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the parameters and the regressor. 
 

2. The algorithm for fitting is iterative and needs starting values 
which you generally need to supply. 
 

3. In non-linear mixed effects models – with nlme – parameters 
in the non-linear model are themselves be modeled through 
linear models potentially based on other predictors. This 
allows the non-linear model to be simpler since it only needs 
to capture the essentially non-linear aspects of the model. 
Another advantage is that this formulation is easier to fit 
numerically, i.e. it's less work for the computer. 
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Growth curve model: 
 
   2

0 1 exp  i.i.d. (0, )i i i iY T N          
 
Non-linear model formula: 
 
  iq ~ b0 + b1*exp(-alpha*days) 
 
The formula contains references to data: iq, days  that will be 
found in the iq data frame. 
 
Parameters: b0, b1, alpha  that need starting values. 
 
Finding starting values: best way: sketch and undertand your model 
and infer plausible parameters. 
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From graphs I would guess:   
 

list( b0 = 100, b1 = -20, alpha = 0.005 ) 
 
How did we get these values? 
 

b0 is the long-run level, b1 is the relative deficit at time 0, 
alpha is the daily proportion of lost iq recovered. It looks like it 
might take 100 days for a half recovery of 0.5, so dividing by 100 
suggests roughly 0.005 per day. 

 
Call in R: 
 
 nls( iq ~ b0 + b1*exp(-alpha*days), iqsim, 
  start = list(  b0 = 100, b1 = -20,  

alpha = 0.005 ) ) 
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R code and output: 
 
>  fit.nl <-nls ( iq ~ b0 + b1*exp( -a*days ), iqsim, 
+          start= list(b0 = 100, b1 = -30, a = .01)) 
>  summary( fit.nl ) 
 
Formula: iq ~ b0 + b1 * exp(-a * days) 
 
Parameters: 
     Estimate Std. Error t value Pr(>|t|)     
b0  99.906891   2.393470  41.741 1.18e-09 *** 
b1 -12.847352   1.620520  -7.928 9.66e-05 *** 
a    0.005820   0.002956   1.969   0.0897 .   
--- 
Residual standard error: 0.9738 on 7 degrees of freedom 
 
Number of iterations to convergence: 4  
Achieved convergence tolerance: 7.917e-06  
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> pred$iq.nl <- predict( fit.nl, pred ) 
> plot( iq ~ days , iqsim, pch = 16,  
+     xlim = c(0,800), ylim = c(85,105) ) 
> lines( iq.nl ~ days , pred, col = 'black', lwd = 2) 
> coef( fit.nl ) 
           b0            b1             a  
 99.906891397 -12.847351723   0.005819758  
>    abline( h = coef(fit.nl)[1], col = 'gray', lwd = 2)   
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Asymptotic growth curve: 
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Polynomials: 
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Alternative: Transforming Time 
What difference does it make if we turn our non-linear model into a 
linear model by transforming time: 
 ttime exp{ 0.0056 days}    
As days , ttime( days ) 0 , as days 0, ttime(days) 1   
 
>    ttime <- function( x ) exp( -0.0058 * x) 
>    fit.lin <- lm( iq ~ ttime( days ), iqsim) 
>    summary(fit.lin) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)  99.9224     0.5628  177.54 1.13e-15 
ttime(days) -12.8535     1.2508  -10.28 6.92e-06 
 
Residual standard error: 0.9109 on 8 degrees of freedom 
Multiple R-squared: 0.9296,     Adjusted R-squared: 0.9208  
F-statistic: 105.6 on 1 and 8 DF,  p-value: 6.922e-06  
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Compare coefficients from tranformed fit and from non-linear fit: 
Coefficients: (transformed) 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  99.9224  0.5628  177.54 1.13e-15  
ttime(days) -12.8535  1.2508  -10.28 6.92e-06 
 
Parameters: (non-linear) 
     Estimate Std. Error t value Pr(>|t|)     
b0  99.906891   2.393470  41.741 1.18e-09 *** 
b1 -12.847352   1.620520  -7.928 9.66e-05 *** 
a    0.005820   0.002956   1.969   0.0897 .   
 
●  The estimated parameters are almost the same but the linear fit using transformed time 

reports much smaller SEs than the non-linear fit. 
●  Why? The linear fit is not taking into account the uncertainty stemming from the fact that a is 

not known. 
●  Note that the biggest difference in SE occurs for the asymptote. Unless you have data well into 

the asymptote – where the curve gets very flat – the estimate of the asymptote depends heavily 
on the estimate of curvature.  

●  When reviewing work that used transformations consider whether a non-linear approach might 
have been more honest. Note that the transformation is free if it is an intentional change in the 
scale: e.g. log(Salary). 
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Summary: 
 
We fit an asymptotic non-linear growth curve to PIQ as a function of Days 
post Coma. 
 
We then try the same model with VIQ in the hope of comparing the two 
models, but the VIQ model does not converge. We explore causes and 
remedies of non convergence and eventually decide on a mild 
reparametrization. It works! We then use the same model on PIQ and 
compare the two models.  
 
These two models are 'univariate' multivariate models, looking at one 
response at a time. To get p-values in the comparison of the models for the 
two responses, we need to do more. One possibility is bootstrapping which 
we don't explore. The other is to exploit multilevel (with 3 levels) 
modeling in nlme to fit something close to (but not exactly) a multivariate 
model.  This is done at the end of the Lab script.
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Recovery of post­coma IQ 
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First 3 years: 
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Using nlme 
The nlme model is specified like a hierarchical model, except that 
you can mix variable levels. 
Example: 
 
 nlme( piq ~ b0 + b1*exp(-a*dayspc),  
  data = iq, 
  fixed = list( b0 ~ 1+sqrt( dcoma ), 
   b1 ~ 1, 
   a ~ 1), 
  random = list( id = b0 ~ 1), 
  start = list( fixed = c(  
   100, 0,-20.,.05)), 
     control = list( maxIter = 100, 

returnObject = TRUE), 
     verbose = T) 
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The code one line at a time: 
 
 
piq ~ b0 + b1*exp(-a*dayspc)  

A non-linear model formula with regressors and parameters. In 
this example, it's the Level 1 model. In general, you could have 
Level 2 regressors in this model.  If you want to use a factor you 
need to use it through its dummies: e.g.  

b.sex * (sex=="Female") 
where b.sex is the parameter multiplying the indicator for 
Female. 

 
 
data = iq, 
 data frame as usual 
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fixed = list(  

b0 ~ 1+sqrt( dcoma ), 
   b1 ~ 1+sqrt( dcoma ),, 
   a ~ 1) 
 

A list of linear model formulas, one for each parameter. Here, 
the parameter a is assumed to have the same value across the 
population, b0 and b1 are assumed to depend through a linear 
model on sqrt(dcoma).  This transformation incorporates an 
assumption that an extra day of coma after, say, 3 days has a 
greater impact than an extra day after 50 days. The sqrt 
transformation was chosen by examining visual plots. It is 
somewhat arbitrary. Also it is an oversimplification to assume 
that a is a constant across the population. 
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random = list( id = list( b0 ~ 1, b1 ~ 1 ) 

 
Specify the parameters that are assumed to vary randomly from 
id to id. Note that b0 is the asymptotic level but it is also a 
constant added to all observations.  
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start = list( fixed =  

c( 100, -10, -20.,-1,.05))) 
This is the challenging part that rewards a good understanding of 
the paramters of the model. Recall the fixed portion of the model 
above: 

fixed = list(  
b0 ~ 1+sqrt( dcoma ), 

   b1 ~ 1+sqrt( dcoma ),, 
   a ~ 1) 

The starting values are listed in the same order as the regressors 
of the 'fixed' portion of the model. Generally, it is good enough to 
have plausible starting values. Draw a sketch and make educated 
guesses  Here, our starting model is: 
  b0 = 100 – 10 * sqrt(dcoma) 
  b1 = –20 – 1 * sqrt(dcoma)  
  a = 0.05 
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control = list( maxIter = 100, 

returnObject = TRUE) 
 
Increases the default number of iterations from 50 to 100 and 
returns the last fit even if there is no convergence. We'll see how 
to use this shortly. 

 
verbose = T 

 
This shows information on each PNLS and LME step. Type 
Ctrl-W in the R console to get unbuffered output and you can 
watch a frequently exciting show. 

 

52



24 

Fitting the model: 
 
 
 
> fit.nlme <- nlme(  
+      piq ~ b0 + b1*exp(-a*dayspc), 
+      data = iq, 
+      fixed = list(  
+            b0 ~ 1 + sqrt(dcoma) , 
+            b1 ~ 1 + sqrt(dcoma) , 
+            a ~ 1), 
+      random = list( id  = list( b0 ~ 1, b1~ 1 )), 
+      control = list( maxIter = 200, returnObject = T), 
+      start = list( 
+             fixed = c(100, -10, -10, 0,.05)), 
+      control = list( maxIter = 100, returnObject = T), 
+      verbose = TRUE) 
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. . . . [Omitting 0utput on Iterations 1 to 3] 
**Iteration 4 
LME step: Loglik: -1287.679 , nlm iterations: 1  
reStruct  parameters: 
      id1       id2       id3  
 1.515913  0.949715 23.921793  
 
PNLS step: RSS =  15018.94  
 fixed effects:97.0948  -1.24521  -11.1453  -3.24829  0.00825027   
 iterations: 7  
 
Convergence: 
       fixed     reStruct  
1.312661e-06 7.021607e-04 
 
 
> summary( fit.nlme ) 
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: piq ~ b0 + b1 * exp(-a * dayspc)  
 Data: iq  
       AIC      BIC    logLik 
  2593.358 2627.577 -1287.679 
 

This was pretty quick convergence 
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Random effects: 
 Formula: list(b0 ~ 1, b1 ~ 1) 
 Level: id 
 Structure: General positive-definite, Log-Cholesky parametrization 
               StdDev    Corr   
b0.(Intercept) 13.769293 b0.(I) 
b1.(Intercept)  2.605835 -0.994 
Residual        6.736055        

 
Fixed effects: list(b0 ~ 1 + sqrt(dcoma), b1 ~ 1 + 
sqrt(dcoma), a ~ 1)  
                   Value Std.Error  DF  t-value p-value 
b0.(Intercept)  97.09476  2.036582 127 47.67536  0.0000 
b0.sqrt(dcoma)  -1.24521  0.480486 127 -2.59157  0.0107 
b1.(Intercept) -11.14530  3.208072 127 -3.47414  0.0007 
b1.sqrt(dcoma)  -3.24829  1.076749 127 -3.01676  0.0031 
a                0.00825  0.001651 127  4.99579  0.0000 
 
 
 Correlation:  
               b0.(I) b0.s() b1.(I) b1.s() 
b0.sqrt(dcoma) -0.724                      
b1.(Intercept) -0.596  0.463               
b1.sqrt(dcoma)  0.463 -0.455 -0.789        
a              -0.309  0.013  0.092 -0.380 
 

worries me a bit 
I might try to reparametrize
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Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-3.332408193 -0.365688335  0.009002275  0.382738703  2.303114344  
 
Number of Observations: 331 
Number of Groups: 200  
 
 
> An interesting calculation: 
 

Between subject SD of 'true' IQ 13.769 
Within subject between test SD of IQ 6.736 
Population SD of IQ 2 213.769 6.736 15.329 
Test-retest reliability of IQ 

Variance in True Score  

Variance of Observed Score
  

2

2

13.769 0.807
15.328

  
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How does fitting work? 
 
 See Pinheiro and Bates (2000) and  Lindstrom and Bates (1990) 
for a description. It's a clever blend of available tools. Bates and 
Watts (1988) Non-linear regession analysis and its applications 
deals with non-linear models for independent data which can be 
adapted to situation where the variance-covariance is known.  
So we have we have tools for non-linear models when the variance 
is known. And we have tools for linear mixed models (lme). If we 
have estimates of parameters in a non-linear model we can construct 
an approximating linear model. 
 
The algorithm keeps repeating 2 steps until convergence: 
 
1) PNLS step: Given an estimate of G and R, estimate fixed 
parameters and random effects using a penalized non-linear least-
squares algorithm. 
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2) LME step: Given estimates of fixed parameters and random 
effects, construct an approximating linear model and estimate G and 
R with lme. 
 
Keep repeating (1) and (2) until the estimates don't change much. 
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Some diagnostics for PIQ 
> plot( fit.nlme, resid(. , type = 'p') ~ fitted(.),  
+         id = .05) 
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> plot( fit.nlme, sqrt( abs( resid(. ,type='p'))) 
+        ~fitted(.), id = .05) 

 
>  plot( ranef( fit.nlme )) # output omitted 

60



30 

>  pairs( ranef( fit.nlme )) 

 
This plot shows the near singularity of the G matrix shown earlier in 
the strong correlation between b0 and b1. It suggests that long-term 
recovery level, possibly related to pre-trauma intelligence does not 
confer so large a benefit in the early stages of recovery. 
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Fitting VIQ 
 
 
> fit.nlme.viq <- nlme(  
+    viq ~ b0 + b1*exp(-a*dayspc), 
+    data = iq, 
+    fixed = list( b0 ~ 1 + sqrt(dcoma) , 
+                  b1 ~ 1 + sqrt(dcoma) , 
+                  a ~ 1), 
+    random = list( id  =  
+        list( b0 ~ 1, b1~ 1 )), 
+    start = list( 
+        fixed = c(100, -.3, -10, -5,.01)), 
+    control = list( maxIter = 100, 
+        returnObject = T), 
+    verbose = T) 
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**Iteration 1 
 
LME step: Loglik: -1246.109 , nlm iterations: 20  
reStruct  parameters: 
        id1         id2         id3  
-0.31704425 -0.03919651  1.58004210  
 
PNLS step: RSS =  8190.372  
 fixed effects:98.3784  -0.398053  -11.1171  -3.81443  0.02529   
 iterations: 7  
 
Convergence: 
    fixed  reStruct  
0.6045864 0.3340419  
 

Then it repeats: 
 
**Iteration 2 
LME step: Loglik: -1242.047 , nlm iterations: 10  
reStruct  parameters: 
       id1        id2        id3  
-0.6005839 -1.1484260  0.3314853  
 
PNLS step: RSS =  29302.31  

We hope these numbers 
will get very small 
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 fixed effects:93.3904  -0.500735  -2.79404  -5.93326  0.0384955   
 iterations: 7  
 
Convergence: 
   fixed reStruct  
2.978855 2.355074  
 
 
Much, much later: 
 
 
**Iteration 97 
LME step: Loglik: -1223.248 , nlm iterations: 11  
reStruct  parameters: 
       id1        id2        id3  
-0.3076645 -0.9642632  0.4746019  
 
PNLS step: RSS =  13520.03  
 fixed effects:96 
 iterations: 7  
 
Convergence: 
    fixed  reStruct  
0.6185455 1.3370712  
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**Iteration 98 
LME step: Loglik: -1239.934 , nlm iterations: 11  
reStruct  parameters: 
       id1        id2        id3  
-0.6920771 -0.9315449  0.3989076  
 
PNLS step: RSS =  9035.715  
 fixed effects:98.3663  -0.345367  -8.12821  -2.46351  0.0134667   
 iterations: 7  
 
Convergence: 
   fixed reStruct  
1.619486 0.572147  
 
**Iteration 99 
LME step: Loglik: -1223.284 , nlm iterations: 11  
reStruct  parameters: 
       id1        id2        id3  
-0.3084674 -0.9647008  0.4741239  
 
PNLS step: RSS =  13512.85  
 fixed effects:96.0224  -0.381974  -9.02973  -5.45431  0.0352635   
 iterations: 7  
 

These are the estimated fixed 
effects at iteration 98 
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Convergence: 
    fixed  reStruct  
0.6181109 1.3332673  
 
**Iteration 100 
LME step: Loglik: -1239.936 , nlm iterations: 11  
reStruct  parameters: 
       id1        id2        id3  
-0.6921102 -0.9316034  0.3988804  
 
PNLS step: RSS =  9033.863  
 fixed effects:98.3667  -0.345443  -8.13618  -2.46378  0.0134763   
 iterations: 7  
 
Convergence: 
    fixed  reStruct  
1.6167060 0.5714619  
Warning message: 
In nlme.formula(viq ~ b0 + b1 * exp(-a * dayspc), data = iq, fixed 
= list(b0 ~  : 
  Maximum number of iterations reached without convergence 
 

Our model didn't converge. 
 

These numbers are just 
bouncing around and not 
getting smaller 

Have a close look at what these 
number have been doing for the 
past few iterations 

66



36 

What to do? 
 

Looking carefully at the output we notice that:  
1)  The convergence criteria are not slowly getting smaller, they're 

bouncing around, and 
2)  Some of the fixed parameters are stuck in an oscillation of period 

2. 
 

Possible actions: 
1)  Increase maxIter and come back much later. In this case it won't 

help, 
2)  Simplify the model, particularly the RE model. Here we could – 

and it would work – but it would require making assumptions we 
would prefer to avoid for now. 

3) Consider whether the model is well identified. Are there 
parameters whoses estimates are far from expected? Or that are 
constantly changing in a given direction as iterations increase? 
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3)  When the process is stuck in a cycle, as it is here, which 
parameters oscillate and how do they oscillated together? Try to 
visualize what this implies about the fitted surface. A cycle can 
mean that the leverage and residuals of some points oscillate 
from iteration to iteration. Such points pull the fit towards 
themselves in one iteration but in the new fit they lose leverage 
and let go of the fitted surface for the next iteration. This can't 
happen with OLS because leverage does not depend on the fit. 
But the linear approximation in non-linear models depends on the 
previous fit so leverage can change from one fit to the next.  The 
points involved tend to be outliers. 

 
Finding problematic points: 
 
1) Use maxIter to stop the iteration at each point in the cycle, with a 

2-cycle, use an odd iteration and an even iteration. Save the fitted 
object in each case. Plot the residuals of one fit against the 
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residuals of the other. The points with very different residuals are 
likely to be the culprits. You can also compare the fits to see how 
each fit attempts to approximate the data. 

 
2) Use your knowledge of the data to isolate some known outliers. 
 
We note that the distribution of dcoma is highly skewed and we'll 
try dropping anyone with dcoma > 100. Note dcoma is a between 
subject variable and extreme values are likely to have high leverage. 
With the asymptotic model for dayspc, influence may be reversed 
with small values being very influential and large values less so. 
After further experimenting we also see that b1, the deficit at 
dayspc = 0 is bound with the estimate of a. A larger value for 
a produces a very negative value of b1. This leads us to the 
realization that attempting to estimate deficit immediately upon 
arousal is not feasible since there is little IQ data that early. We can 
easily move the origin to say one month after arousal by simply 
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changing dayspc to dayspc – 30 in the non-linear formula. If 
this works we can do the same for PIQ to have comparable results. 
 
> fit.nlme.viq2 <-nlme( viq ~ b0 + b1*exp(-a*(dayspc-30)), 
+         data = iq, 
+         fixed = list( b0 ~ 1 + sqrt(dcoma) , 
+                       b1 ~ 1 + sqrt(dcoma) , 
+                       a ~ 1), 
+         random = list( id  = list( b0 ~ 1, b1~ 1 )), 
+         start = list( 
+         fixed = c(100, -.3, -10, 0,.3)), 
+         control = list( maxIter = 100, returnObject = T), 
+         verbose = T, 
+         subset = dcoma < 100) 
 

which converges in 3 iterations: 
.  .  .  .  .  . 
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**Iteration 3 
LME step: Loglik: -1225.668 , nlm iterations: 1  
reStruct  parameters: 
       id1        id2        id3  
-0.8286352 12.2429072 59.7420069  
 
PNLS step: RSS =  9725.302  
 fixed effects:99.2084  -0.561859  -6.79895  -1.87309  
0.0214789   
 iterations: 7  
 
Convergence: 
       fixed     reStruct  
1.054542e-07 1.588532e-01  
> 
> summary( fit.nlme.viq2 ) 
Nonlinear mixed-effects model fit by maximum 
likelihood 
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  Model: viq ~ b0 + b1 * exp(-a * (dayspc - 30))  
 Data: iq  
  Subset: dcoma < 100  
       AIC      BIC    logLik 
  2469.336 2503.363 -1225.668 
 
Random effects: 
 Formula: list(b0 ~ 1, b1 ~ 1) 
 Level: id 
 Structure: General positive-definite, Log-Cholesky 
parametrization 
               StdDev       Corr   
b0.(Intercept) 1.254731e+01 b0.(I) 
b1.(Intercept) 2.640292e-05 0      
Residual       5.478719e+00        
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Fixed effects: list(b0 ~ 1 + sqrt(dcoma), b1 ~ 1 + 
sqrt(dcoma), a ~ 1)  
                  Value Std.Error  DF  t-value p-value 
b0.(Intercept) 99.20845 1.7262297 196 57.47117  0.0000 
b0.sqrt(dcoma) -0.56186 0.4940133 123 -1.13734  0.2576 
b1.(Intercept) -6.79895 2.2442154 123 -3.02954  0.0030 
b1.sqrt(dcoma) -1.87309 0.7804948 123 -2.39987  0.0179 
a               0.02148 0.0044938 123  4.77971  0.0000 
 
 
 Correlation:  
               b0.(I) b0.s() b1.(I) b1.s() 
b0.sqrt(dcoma) -0.777                      
b1.(Intercept) -0.418  0.332               
b1.sqrt(dcoma)  0.312 -0.343 -0.860        
a              -0.148 -0.057  0.096 -0.058 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-2.157276598 -0.389534045  0.007514936  0.366479340  1.903012142  
 
Number of Observations: 324 
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Number of Groups: 197 

 
We have no evidence of a long-term effect of duration of coma and 
only weak evidence of an effect at the end of 30 days. 
 
Refitting PIQ with a similar model: 
 
 
>  fit.nlme.piq2 <-nlme( piq ~ b0 + b1*exp(-a*(dayspc-30)), 
+      data = iq, 
+      fixed = list( b0 ~ 1 + sqrt(dcoma) , 
+                    b1 ~ 1 + sqrt(dcoma) , 
+                    a ~ 1), 
+      random = list( id  = list( b0 ~ 1, b1~ 1 )), 
+      start = list( 
+             fixed = c(100, -.3, -10, 0,.1)), 
+      control = list( maxIter = 100, returnObject = T), 
+      verbose = T, 
+      subset = dcoma < 100) 
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which also converges quickly. 
> summary( fit.nlme.piq2 ) 
. . . .  
Random effects: 
 Formula: list(b0 ~ 1, b1 ~ 1) 
 Level: id 
 Structure: General positive-definite, Log-Cholesky 
parametrization 
               StdDev       Corr   
b0.(Intercept) 1.303845e+01 b0.(I) 
b1.(Intercept) 1.288991e-04 0.001  
Residual       6.640711e+00        
 
Fixed effects: list(b0 ~ 1 + sqrt(dcoma), b1 ~ 1 + 
sqrt(dcoma), a ~ 1)  
                   Value Std.Error  DF  t-value p-value 
b0.(Intercept)  98.45118 2.1594531 123 45.59079  0.0000 
b0.sqrt(dcoma)  -1.52286 0.5784392 123 -2.63270  0.0096 
b1.(Intercept) -10.71808 2.6410052 123 -4.05833  0.0001 
b1.sqrt(dcoma)  -2.06639 0.8298037 123 -2.49022  0.0141 
a                0.00707 0.0014827 123  4.76892  0.0000 
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These results contrast interestingly with VIQ. 
 

EXERCISE: Note that b1 has very small variability in both models. 
What happens if you refit without a random effect for b1. 
 

Comparison of half­recovery times 
1Half-recovery time
ln(2)




 

 

IQ   half-recovery time
VIQ 0.02148 67  days 
PIQ 0.00707 204 days 

 

EXERCISE: Reparametrize the non-linear model formula to use 
half-life instead of IRRR in the model. Are the results consistent? 
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Visual comparisons of PIQ and VIQ 
 
# 
 
windows( height = 7, width = 8.5) 
 
pred <- expand.grid( dcoma = c(0,1,7,16,25,100), 
                 dayspc = seq(30,365*2,5)) 
pred$piq <- predict( fit.nlme.piq2, pred, level = 0 ) 
pred$viq <- predict( fit.nlme.viq2, pred, level = 0 ) 
 
zz <- factor( paste( 'dcoma =', pred$dcoma)) 
pred$dcoma.lab <- reorder( zz, pred$dcoma) 
 
td( col = c('blue','red'), lwd = 2) 
xyplot( viq + piq ~ dayspc | dcoma.lab, pred, type = 'l', 
    ylim = c(60,102), 
    lwd = 2, auto.key = list(columns = 2, points = F, lines = T)) 
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pred2 <- expand.grid( dcoma = 0:100, 
                    dayspc = c(30,60,90.180,360,720)) 
pred2$piq <- predict( fit.nlme.piq2, pred2, level = 0 ) 
pred2$viq <- predict( fit.nlme.viq2, pred2, level = 0 ) 
 
zz <- factor( paste( 'dayspc =', pred2$dayspc)) 
pred2$dayspc.lab <- reorder( zz, pred2$dayspc) 
 
 
xyplot( viq + piq ~ dcoma | dayspc.lab, pred2, type = 'l', 
          ylim = c(60,102), 
          lwd = 2,  
          auto.key = list(columns = 2, points = F, lines = T)) 
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predviq <- expand.grid( dcoma = seq(0,100,10), 
                    dayspc = seq(30,720,30)) 
predpiq <- predviq 
predviq $ iq <- predict( fit.nlme.viq2, predviq, level = 0) 
predpiq $ iq <- predict( fit.nlme.piq2    , predpiq, level = 0) 
predpiq$type <- factor( "PIQ" ) 
predviq$type <- factor( "VIQ" ) 
 
 
 
 
wireframe( iq ~ dayspc + dcoma | type, Rbind( predpiq, predviq)) 
 
 

Default options and orientation for a wireframe plot: 
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wireframe( iq ~ dcoma + dayspc | type, Rbind( predpiq, predviq), 
         scales = list( arrows = F), col = 'blue') 
 
 

Exchange axes for a more natural presentation of dayspc (Level 1 
variable) and dcoma (Level 2) 
 
Suppress arrows and get axis with values and tickmarks. 
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wireframe( iq ~ dcoma + dayspc | type, Rbind(predpiq, predviq), 
         scales = list( arrows = F), col = 'blue', 
         xlab = 'Coma', 
         ylab = 'Days post coma', 
         screen = list( z = -65, x = -75 )) 
 

With the 'screen' parameter, you can control the orientation of the 
graph.  Here, the z axis is tha vertical axis, the x axis, the horizontal 
axis in the surface of the screen and y, the horizontal axis straight 
into the screen. 
 
Rotation in the z axis of -65 degrees results in clockwise rotation of 
+65 degrees from the top and x-axis rotation of -75, tilts the graph 
up by 75 degrees. 
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wireframe( iq ~ dcoma + dayspc , Rbind(predpiq, predviq), 
         groups = type, 
         scales = list( arrows = F), col = 'blue', 
         xlab = 'Coma', 
         ylab = 'Days post coma', 
         screen = list( z = -65, x = -75 ), 
         auto.key = list(columns=2, lines = T, points = F), 
         alpha = .5) 
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See the Non-Linear Lab script for a multivariate model that 
compares the parameters for PIQ and VIQ. 
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