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When	does	missing	data	matter?	
Easy ‘solution’: 

 Don’t use any record that has missing data for any variable used in the 
model:  “complete case analysis” 

 With multilevel or longitudinal data, if a Level-1 variable is missing we 
only drop the single Level-1 observation or the single occasion. 

 If a Level-2 variable is missing, we drop the group. 
 What can go wrong with complete case analysis? 

 

An example: 

David Reid and Saunia Ahmad at York University do research on couple 
counselling. The ultimate goal of X : treatment is to improve 
Y: relationship satisfaction. But the proximate target is increasing 
W: couple identity (Weness).  
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To visualize better, we consider treatment to be a continuous variable, a 
kind of dose of psychotherapy. Pretend it corresponds to different durations. 
The hypothesis (and, it seems, reality) is that 

 X W Y 
To test whether X causes Y, we need to regress Y on X alone: i.e. Y ~ X. 

To test how X causes Y, we would consider the models Y ~ X + W, W ~ X 
and Y ~ W. 

Let’s see what happens under different scenarios for missingness. 

Full data: 
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Treat is significant 
in Y ~ Treat

But not in  

Y ~ Treat + Weness 
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 Let us see what happens when we have missing data for Y 
 

 Three mechanisms: 
1) Missing if Y > 50 
2) Missing if X > 50 
3) Missing if W > 50 

 
 Consequences for CCA (Complete Case Analysis):  

o What happens if we perform analyses only using complete cases.  
i.e. rows with no missing data. 
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Missingness	due	to	Y	
Y is missing if Y > 50 
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Model: lm(formula = Sat ~ Treat, data = dd) 

 
All Data 
            Estimate Std. Error t value Pr(>|t|)     
Treat        0.58652    0.04558   12.87   <2e-16 *** 
 
Complete Cases (missing if Y > 50) 
            Estimate Std. Error t value Pr(>|t|)     
Treat        0.23295    0.05289   4.404 1.98e-05 *** 
 
 
 
Model: lm(formula = Sat ~ Treat + Weness, data = dd) 
 
All Data 
            Estimate Std. Error t value Pr(>|t|)      
Treat       -0.05820    0.05582  -1.043    0.298     
Weness       0.85301    0.05786  14.744  < 2e-16 *** 
 
Complete Cases (missing if Y > 50) 
            Estimate Std. Error t value Pr(>|t|)     
Treat       -0.08649    0.06186  -1.398    0.164     
Weness       0.55795    0.07367   7.573 3.21e-12 *** 
 

 

So missingness affects both regressions. 
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Missingness	due	to	Treatment:	Y	missing	if	X	>	50	
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Model: lm(formula = Sat ~ Treat, data = dd) 
 
All Data: 
            Estimate Std. Error t value Pr(>|t|)     
Treat        0.58652    0.04558   12.87   <2e-16 *** 
 
Complete Cases (missing if X > 50): 
            Estimate Std. Error t value Pr(>|t|)     
Treat         0.6130     0.1071   5.721 5.30e-08 *** 
 

 
Note: Coefficient did not change ‘much’ but SE increased by a factor of 
2.35 – approximately what we expected because the SD of X was reduced 
by a factor of about .6 and n was reduced by 1/2. 

The effect on the SE of ˆ
X is to increase by a factor of  1 2.36

.6 1/ 2
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Model: lm(formula = Sat ~ Treat + Weness, data = dd) 
 
All Data: 
            Estimate Std. Error t value Pr(>|t|)     
Treat       -0.05820    0.05582  -1.043    0.298     
Weness       0.85301    0.05786  14.744  < 2e-16 *** 
 
Complete Cases (missing if X > 50): 
 
Treat       -0.07726    0.10074  -0.767   0.4443     
Weness       0.87185    0.07775  11.214   <2e-16 *** 
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Recap so far: 

If missingness is due to Y, both models go bad. 

If missingness is due to X, both models are unbiased – although SEs are 
larger, as expected. 

Missingness	due	to	Mediator:	Y	missing	if	Weness	>	50	
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The green points are present under ‘Treat missingness’ but absent under 
‘Weness missingness’. Conversely for the orange points. So going from 
Treat-missingnes to Weness-missingness, we remove the green points and 
add the orange points.  
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The effect is to flatten the regression on Treat. 
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But the relationship of Sat with both Treat and Weness is not seriously 
affected: 
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Model: lm(formula = Sat ~ Treat, data = dd) 
 
All Data: 
            Estimate Std. Error t value Pr(>|t|)     
Treat        0.58652    0.04558   12.87   <2e-16 *** 
 
Complete Cases (missing if Weness > 50) 
 
            Estimate Std. Error t value Pr(>|t|)     
Treat        0.25010    0.07652   3.268  0.00134 **  
 
 
Model: lm(formula = Sat ~ Treat + Weness, data = dd) 
 
All Data: 
 
            Estimate Std. Error t value Pr(>|t|)     
Treat       -0.05820    0.05582  -1.043    0.298     
Weness       0.85301    0.05786  14.744  < 2e-16 *** 
 
Complete Cases (missing if Weness > 50) 
 
            Estimate Std. Error t value Pr(>|t|)     
Treat       -0.10097    0.07681  -1.315  0.19068     
Weness       0.83638    0.10222   8.182 1.17e-13 *** 
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Classifying	missingness	
 

MCAR = Missing Completely at Random (given fixed non-missing 
predictors). This means that knowing the residual from a regression on fixed 
non-missing predictors does not help to predict missingness. 

 

MAR = Missing at Random: Probability that a row or case has missing data 
depends on missing values only through non-missing data. i.e. Missing 
values contain no additional information on probability that data is missing. 

 

MNAR = none of the above: missing values contain information that is not 
already contained in the non-missing data. 

 

18



Classical example: Consider therapy for depression. You want to estimate 
the rate of improvement over time.  Patients are examined and scored on 
Y =  Depression weekly until they drop out:  

 

MAR: They stop coming AFTER they have achieved a sufficiently low Y: 

 Missingness depends on a value of Y that has been observed. 

MNAR: They stop coming on the first occasion when they feel they have 
recovered. 

 Missingness depends on the unobserved value of Y. 
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For regression models: Y X    , we think of X  as fixed and we think of 
the distribution of Y  as dependent on X , i.e. we can think of   as the 
random component of the model. 

MCAR: Conditionally on fixed components of model, missingness is 
independent of Y.  

MAR: Conditionally on fixed components of model, missingness is 
independent of unobserved components of Y.  

Key point:  

Whether missingness is MCAR or MAR depends on missingness 
mechanism and on model. 

  

20



 

  Model 
  Y ~ X Y ~ X + W 
Missingness 
mechanism 

Y > 50 not MCAR not MCAR 
X > 50 MCAR MCAR 
W > 50 not MCAR 

but could be 
MAR with 
right model 

MCAR 

 

If missingness is due to X, then X must be in the model to achieve MCAR. 

If missingness is MCAR for a model, then Complete Case Analysis gives 
unbiased estimates of coefficients – although CCA might not make best use 
of the available information. 
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What	can	we	do	with	Y~X	when	Y	is	missing	if	W	>	50?	
In this case missingness is MAR (missing at random) if we could think of 
(Y,W) as random and note that the probability of a case having missing data 
(for Y) is a function of observed data (W). We could create a FIML (Full 
Information Maximum Likelihood Model) for (Yobs,W | X).  

In the usual display of coefficients for a mediation model: 

W
X Y  

the coefficients a and c are estimated in the regression of (Y,W) on X and 
the coefficient b is estimated from the variance-covariance estimate of 
(Y,W) conditional on X. Finally the ‘total effect’ of X on Y is estimated 
with c ab .  

 

  

c 

ba 
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Example	where	LME	works	with	MAR:	
Simulation exercise: 

 Estimate Growth as a function of age 
 Subjects drop out after first achieving a threshold    MAR 
 Subjects drop out before first achieving a threshold    NMAR 
 Population average trajectory: 10 + 3 x age 
 Observations on N subjects at ages 1 to 20 

 Suppose variance matrix for intercept and slope is:
 

1 0
0 .2
 
 
 

 

 and within-occasion   is 1. 
1) Generate complete data 
2) Set as missing any y > 40; analyze 
3) Set as missing any ys after the first y equal to 40; analyze 
4) Compare the two analyses. How close do they get to estimating 

the ‘true’ population parameters: intercept = 30 and coefficient 
of age = 3. 
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The	Magic	of	Multiple	Imputation:	
If you have missing data, don’t throw away the good data that goes with 
your missing data (i.e. CCA), just make up (‘impute’) the missing data! 

When can this work? If the non-missing data can give you a reasonable 
guess of the missing data. I.E. the missingness is MAR given all available 
data – not just the data in analysis model. 

Q: But guesses have less variability than real random data – a predicted 
value generally has less variability than what it predicts.  So imputed data 
might not look like real data. 

A: Add random errors to make the imputed data look like real data. 

Q: But this is crazy! If I just make up the data, how do I know my results 
aren’t just a random consequence of the data I made up? 

A: Do it many times and you will be able to tell how much making up the 
data contributed to the variability in your results. 
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The main advantage of multiple imputation: It separates taking care of 
missingness from doing the analysis. You can take care of missingness 
with imputation and once that is done, do your analysis without looking 
back.     

Important implications for research practice: You can get closer to MAR by 
adding more variables, e.g. proxies for variable of primary interest. Proxies 
are hard to include in an analytic model but a cinch to add in an imputation 
model.  So it’s worthwhile getting those additional variables.   

Missing data imputation is a predictive problem – thus much easier than a 
causal problem. Easier to automate, variables can be selected on fit. 

A note to statistical consultants: If a client says they have no missing data, 
that’s almost a sure sign that they do. They just tried to do you a favour by 
throwing away cases with missing data. Suggest that they should get it back! 

 

     

25



 

Summarizing the Magic of Multiple Imputation 

 The guessing (imputation) model can use all available variables, 
whether they are appropriate or not for the analysis model (e.g. 
mediators that must be excluded in a model for causal estimation) 

 Having imputed you can use the data for many models. 
 You can usefully gather information that would have been useless in an 

analysis model. E.g. proxies for a variable that might have missing data: 
you can use the proxies to impute but they would be a collinear 
embarrassment in a model for analysis. 

 Caution: should use all analysis variables in the imputation model. 
 Overfitting is not a major issue except to the extent that the distribution 

of predictor variables in complete data is very different from that of 
predictor variables where data is missing. Bayesian methods are used to 
obtain predictive models.  
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Overview of the Process of Multiple Imputation: 
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Details	of	imputation:	
Uses MCMC: Steps: 

 0)  Make up missing data somehow – perhaps just use model fitted on non-
missing data. 

 1)  Fits imputation model for each Z with missing data on all other 
variables. 

 2)  Use a Bayesian posterior to generate random parameters for each 
imputation model. 

 3)  Use random parameter imputation models to generated predicted 
imputed values for missing data + random error. If more than one 
variable has missing values, cycle around replacing previous imputed 
values with new as you impute each variable in turn.   

 4)  If you have iterated long enough to have ‘converged’, use last imputed 
values as a set of imputed values. Otherwise go back to 1 using newly 
imputed and original data. 
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MCMC magic: If you iterate long enough, and the estimation/imputation 
process doesn’t get stuck, you will have imputed values that are a random 
sample of the missing data given the observed data. 

In practice we want at least m = 5 independent sets of imputed values. So 
we run the process above m times – in parallel (each separate process is 
called a chain) – and we compare the eventual independence of the chains 
from their starting position and from each other to assess convergence. 

If there is more than one variable with missing data, this process is called 
‘chained equations’ or ‘fully conditional specification’ FCS. It works with 
same magic as MCMC.  

“Ideally” you would like to generate missing values from the joint 
distribution for missing variables, but there are too many possibilities. FCS 
just estimates one imputation model for each individual variable from all the 
others. How does this work when there is more than one value missing? The 
process cycles through: make a guess for one variable, then use that in the 
model to guess the other, etc. 
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 Do Lab on Missing Data. 

 

Question 14 of Andrew Gelman’s final exam for 
Design and Analysis of Sample Surveys 
Posted by Andrew on 24 May 2012, 5:00 pm 

14. A public health survey of elderly Americans includes many questions, including “How many 
hours per week did you exercise in your most active years as a young adult?” and also several 
questions about current mobility and health status. Response rates are high for the questions 
about recent activities and status, but there is a lot of nonresponse for the question on past 
activity. You are considering imputing the missing values on the question, “How many hours per 
week did you exercise in your most active years as a young adult?” Which of the following 
statements are basically correct? (Indicate all that apply.) 

(a) If done reasonably well, imputation is preferred to available-case and complete-case analysis. 

(b) If you do impute, you should also present the available-case and complete-case analysis and 
analyze how the imputed estimates differ. 

(c) It is OK to include current health status variables as predictors in a model imputing past 
activities: anything that adds information is good when imputing. 

(d) It is probably not a good idea to include current health status variables as predictors in a 
model imputing past activities: current health is possibly influenced by past activities, and 
including a casual outcome can bias estimates of a treatment variable. 
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(e) If you fit a regression model and impute your best prediction for each person (rather than 
imputing random draws from the predictive distribution), you can have problems because you will 
be more likely to impute extreme values. 

(f) It is a good idea to fit a logistic regression predicting response/nonresponse to the question of 
interest as a way to look for systematic differences between respondents and nonrespondents on 
this question. 

 

Reference:  

van Buren, S and Groothuis-Oudshoorn, K. (2011) “mice: Multivariate 
Imputation by Chained Equations in R”, Journal of Statistical Software, 
45(3) at http://www.jstatsoft.org/ 
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