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Summary: 
 
At first sight a mixed model for longitudinal data analysis does not 
look very different from a mixed model for hierarchical data. In 
matrices: 
Linear Model 2~ ( , )N  y Xβ ε ε 0 I  
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Formally, mixed models for hierarchical data and for longitudinal data look 
almost the same.  In practice, longitudinal data introduces some fascinating 
challenges: 
 
1)  The observations within a cluster are not necessarily independent. This 
is the reason for the broader conditions that ~ ( , )j jNε 0 R  (where jR  is a 
variance matrix) instead of merely the special case: 2~ ( , )j jN  Iε 0 .  
Observations close in time might depend on each other in ways that are 
different from those that are far in time. Note that if all observations have 
equal variance and are equally positively correlated – what is called a 
Compound Symmetry variance structure – this is entirely accounted for by 
the random intercept model on the G side. The purpose of the R matrix is to 
potentially capture interdependence that is more complex than compound 
symmetry. 
 
2) The mean response may depend on time in ways that are far more 
complex than is typical for other types of predictors.  Depending on the time 
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scale of the observations, it may be necessary to use polynomial models, 
asymptotic models, Fourier analysis (orthogonal trigonometric functions) 
or splines that adapt to different features of the relationship in different 
periods of times.  
 
3) There can be many partially confounded 'clocks' in the same analysis: 
period-age-cohort effects, age and time relative to a focal event such as 
giving birth, injury, arousal from coma, etc. 
 
4) Some periodic patterns can be modeled either with fixed effects or with 
random effects through the R matrix. Periodic patterns with a fixed period 
(e.g. seasonal periodic variation) are naturally modeled with fixed effects 
(FE) using, for example, trigonometric functions.  Periodic patterns with a 
randomly varying period (e.g. sunspot cycles, are more appropriately 
modeled with the R matrix which can be used to model the kind of pattern 
encountered in time series analysis, autoregressive and moving average 
models for residuals 
These slides focus on the simple functions of time and the R side. Lab 3 
introduces more complex forms for functions of time.  
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Take 1: The basic ideas 
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A traditional example 

Figure 1: Pothoff and Roy dental measurements in boys and girls. 

Balanced data: 
 everyone measured at 

the same set of ages 
 could use a classical 

repeated measures 
analysis 

 
Some terminology: 
 
Cluster: the set of 
observations on one 
subject 
 
Occasion: observations 
at a given time for each 
subject 
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Figure 2: A different view by sex 

Viewing by sex helps to 
see pattern between 
sexes: 
Note:  
Slopes are relatively 
consistent within each 
sex – except for a few 
anomalous male curves. 
BUT 
Intercept is highly 
variable. 
An analysis that pools 
the data ignores this 
feature. Slope estimates 
will have excessively 
large SEs and 'level' 
estimates too low SEs. 
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Pooling the data ('wrong' analysis) 
 
Ordinary least-squares on pooled data: 
 

 
0

1, , (number of subjects [clusters])
1, , (number of occasions for th subject)

age sex age sexit it i it i it

i

y age sex age sex
i N
t T i

        





 

Note that it is customary to use i for subjects (clusters) and t for 
occasions (time). This means that ‘i’ assumes the role previously 
played by ‘j’.  
 
R: 
 
> library( spida )   # see notes on installation 
> library( nlme )    # loaded automatically  
> library( lattice ) # ditto  
> data ( Orthodont ) # without spida 
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> head(Orthodont) 
  distance age Subject  Sex 
1     26.0   8     M01 Male 
2     25.0  10     M01 Male 
3     29.0  12     M01 Male 
4     31.0  14     M01 Male 
5     21.5   8     M02 Male 
6     22.5  10     M02 Male 
> dd <- Orthodont 
 
> tab(dd, ~Sex) 
Sex 
  Male Female  Total  
    64     44    108  
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> dd$Sub <- reorder( dd$Subject, dd$distance)  
# for plotting 
  
## OLS Pooled Model 
   
>     fit <- lm ( distance ~ age * Sex , dd) 
>     summary(fit) 
  .  .  . 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)    16.3406     1.4162  11.538  < 2e-16 *** 
age             0.7844     0.1262   6.217 1.07e-08 *** 
SexFemale       1.0321     2.2188   0.465    0.643     
age:SexFemale  -0.3048     0.1977  -1.542    0.126     
 
Residual standard error: 2.257 on 104 degrees of freedom 
Multiple R-squared: 0.4227,     Adjusted R-squared: 0.4061  
F-statistic: 25.39 on 3 and 104 DF,  p-value: 2.108e-12  
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Note that both SexFemale and age:SexFemale have 
large p-values. Are you tempted to just drop 
both of them? 
 
Check the joint hypothesis that they are  
BOTH 0. 
 
> wald( fit, "Sex") 
 
    numDF denDF  F.value p.value 
Sex     2   104 14.97688 <.00001 
                
Coefficients     Estimate Std.Error  DF   t-value p-value  
  SexFemale      1.032102  2.218797 104  0.465163 0.64279 
  age:SexFemale -0.304830  0.197666 104 -1.542143 0.12608  
 
This analysis suggests that we could drop one 
or the other but not both! Which one should we 
choose? To respect the principle of marginality 
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we should drop the interaction, not the main 
effect of Sex. This leads us to: 
 
 
> fit2 <- lm( distance ~ age + Sex ,dd ) 
> summary( fit2 ) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 17.70671    1.11221  15.920  < 2e-16 *** 
age          0.66019    0.09776   6.753 8.25e-10 *** 
SexFemale   -2.32102    0.44489  -5.217 9.20e-07 *** 
 
and we conclude there is an effect of Sex of 
jaw size but did not find evidence that the 
rate of growth is different. 
 
Revisiting the graph we saw earlier:  
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Figure 3: A different view by sex 

 
The analysis is inconsistent 
with what we see. It fails 
Tukey’s interocular test. 
Except for a few irregular 
male trajectories, the male 
trajectories appear steeper 
than the female ones. On 
the other hand, if we 
extrapolate the curves back 
to age 0, there would not 
much difference in levels. 
estimates too low SEs. 

OLS cannot exploit the consistency in slopes to recognize that 
hypotheses about slopes should have a relatively smaller SE than 
hypotheses about the levels of the curves. OLS is blind to the lines. 
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From the first OLS fit: 
 
Estimated variance 
within each 
subject: 
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Why is this wrong? 
 

 Residuals within 
clusters are not 
independent; they tend 
to be highly correlated 
with each other 

age

di
st

an
ce

20

25

30

8 9 10 12 14

M16 M05

8 9 10 12 14

M02 M11

8 9 10 12 14

M07 M08

M03 M12 M13 M14 M09

20

25

30

M15

20

25

30

M06 M04 M01 M10

F10 F09 F06 F01 F05

20

25

30

F07

20

25

30

F02

8 9 10 12 14

F08 F03

8 9 10 12 14

F04 F11



 18 

 
 
 
Fitted lines in ‘data 
space’. 
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Determining the 
intercept and slope of 
each line 

 
age

di
st

an
ce

15

20

25

30

0 5 10

Male

15

20

25

30

Female



 20 

 
 
Fitted lines in 
‘data’ space 
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Fitted ‘lines’ in 
‘beta’ space 
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Fixed effects regression model 
 
See  
Paul D. Allison (2005) Fixed Effects Regression Methods for 
Longitudinal Data Using SAS. SAS Institute – a great book on basics 
of mixed models! 
 
 Treat Subject as a factor 

 
 Lose Sex unless it is constructed as a Subject contrast 

 
 Fits a separate OLS model to each subject: 

 
 it i age it iti agey       
  
See the wiki for details: SPIDA 2010: Longitudinal Models: 
Additional material 
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Estimated variance for 
each subject: 
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Problems: 
 
● No estimate of sex 
effect 
● Can't generalize to 
population, only to 'new' 
observations from same 
subjects 
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● Can't predict for new 
subject. 
● Can construct sex 
effect but CI is for 
difference between 
sexes in this sample  
● No autocorrelation in 
time 
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Fitted lines in data 
space 
 
● Female lines lower 
and less steep 
 
● Patterns within Sexes 
not so obvious. 
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Fitted lines in beta 
space 
 
● Patterns within sexes 
more obvious: steeper 
slope associated with 
smaller intercept. 
 
● Single male outlier 
stands out 
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Each within-subject 
least squares estimate 
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construct a confidence 
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for the ith subject. 
Each CI uses only the 
information from that 
subject (except for the 
estimate of   ) 
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Differences between 
subjects such as the 
dispersion of ˆ

i s and the 
information they provide 
on the dispersion of the 
true i s is ignored in this 
model.  
 
The standard error of the 
estimate of each average 
Sex line uses the sample 
distribution of it s within 
subjects but not the 
variability in i s 
between subjects. 
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Other approaches 
 
 Repeated measures (univariate and multivariate) 

 
o Need same times for each subject, no other time-varying 

(Level 1) variables  
 

 Two-stage approach: use ̂ s in second level analysis: 
 
o If design not balanced, then î s have different variances, and 

would need different weights, Using ' 1( )i i  X X  does not 
work because the relevant weight is based on the marginal 
variance ' 1( )i i  G X X  , not the conditional variance given 
the ith subject, ' 1( )i i  X X .  
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Multilevel Models 
 
Start with the fixed effects model: 
 
 Within-subject model (same as fixed effects model above): 
 

1it it iti iy X  


            ~ (0, )i N I  
  

 1, , 1, , ii N t T    
 

0i  is the ‘true’ intercept and 1i  is the ‘true’ slope with respect to 
X.  
 
   is the within-subject residual variance. 
 
X  (age in our example) is a time-varying variable. We could have 
more than one. 
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Then add: 
Between-subject model (new part): 
We suppose that 0i  and 1i  vary randomly from subject to 
subject.  
But the distribution might be different for different Sexes (a 
‘between-subject’  or ‘time-invariant’ variable). So we assume a 
multivariate distribution: 
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where iW  is a coding variable for Sex, e.g. 0 for Males and 1 for 
Females. 
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Some software packages use the formulation of the multilevel model, 
e.g. MLWin. 
SAS and R use the ‘mixed model’ formulation.  It is very useful to 
know how to go from one formulation to the other. 
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From Multilevel Model to Mixed Model 
 
 Combining the two levels of the multilevel model by substituting 

the between subject model into the within-subject model. Then 
gather together the fixed terms and the random terms: 
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Anatomy of the fixed part: 

 

1

1

(Intercept)
(between-subject, time-invariant variable)
(within-subject, time-varying variable)
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Interpretation of the fixed part: the parameters reflect population 
average values.   
 

Anatomy of the random part: 
  For one occasion: 

 
0 1i i iit ittu u X    
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Putting the observations of one subject together: 
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Note: the random-effects design uses only time-varying variables 
 
Distribution assumption: 

 
~ (0, ) independent of ~ (0, )i iiu N NG R    

where, so far, i I R  
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Notes: 
 

 G (usually) does not vary with i. It is usually a free positive 
definite matrix or it may be a structured pos-def matrix. 
More on G later. 

 
 iR  (usually) does change with i – as it must if iT is not 

constant.  iR  is expressed as a function of parameters. The 
simplest example is 

i in ni I 
R . Later we will use iR  to 

include auto-regressive parameters for longitudinal 
modeling. 

 
 We can’t estimate G and R directly. We estimate them 

through: 
 

'Var( )i i i ii  V Z GZ R  
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 Some things can be parametrized either on the G-side or on 

the R-side. If they’re done in both, you lose identifiability. 
Ill-conditioning due “collinearity” between the G- and R-
side models is a common problem. 
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Mixed Model for Longitudinal Data in R: 
  
>  fit <- lme( distance ~ age * Sex, dd, 
+         random = ~ 1 + age | Subject, 
+         correlation  
+          = corAR1 ( form = ~ 1 | Subject)) 
 
 

 Model formula: distance ~ age * Sex 
 
o specifies the fixed model 
o includes the intercept and marginal main effects by default 
o contains time-varying, time-invariant and cross-level 

variables together 
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 Random argument: ~ 1 + age | Subject 
 
o Specifies the variables in the random model and the variable 

defining clusters. 
 

o The G matrix is the variance covariance matrix for the 

random effect. Here 00 0,00

,,, ,0

Var Var ageii

age ageage iage i age

g gu
u g g




    
    

        
  G  

 
o Normally, the random model only contains an intercept and, 

possibly, time-varying variables 
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 Correlation argument: Specifies the model for the iR  matrices 
 
o Omit to get the default: 

i in ni  
R I  

 
o Here we illustrate the use of an AR(1) structure producing for 

example 
1 2 3

1 1 2

2 1 1

3 2 1

1
1

1
1

iR

  
  
  
  



 
 
 
 
 
 
  

  in a cluster with 4 occasions. 
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#   Mixed Model in R: 
     
>  fit <- lme( distance ~ age * Sex, dd, 
+      random = ~ 1 + age | Subject, 
+      correlation  
+            = corAR1 ( form = ~ 1 | Subject)) 
 
>  summary(fit) 
Linear mixed-effects model fit by REML 
 Data: dd  
       AIC      BIC    logLik 
  446.8076 470.6072 -214.4038 
 
Random effects: 
 Formula: ~1 + age | Subject 
 Structure: General positive-definite, Log-
Cholesky parametrization 
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            StdDev    Corr   
(Intercept) 3.3730482 (Intr)      

00
g   

age         0.2907673 -0.831   
              

11 01 01 00 11
/g r g g g   

Residual    1.0919754        
 
Correlation Structure: AR(1) 
 Formula: ~1 | Subject  
 Parameter estimate(s): 
     Phi  
-0.47328     
   correlation between adjoining obervations 
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Fixed effects: distance ~ age * Sex  
                  Value Std.Error DF   t-value p-value 
(Intercept)   16.152435 0.9984616 79 16.177323  0.0000 
age            0.797950 0.0870677 79  9.164702  0.0000 
SexFemale      1.264698 1.5642886 25  0.808481  0.4264 
age:SexFemale -0.322243 0.1364089 79 -2.362334  0.0206 
 Correlation: among gammas 
              (Intr) age    SexFml 
age           -0.877               
SexFemale     -0.638  0.559        
age:SexFemale  0.559 -0.638 -0.877 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           
Q3          Max  
-3.288886631 -0.419431536 -0.001271185  
0.456257976  4.203271248  
 
Number of Observations: 108 
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Number of Groups: 27 
 
Confidence intervals for all parameters: 
 
>     intervals( fit ) 
Approximate 95% confidence intervals 
 
 Fixed effects: 
                   lower       est.       upper 
(Intercept)   14.1650475 16.1524355 18.13982351 
age            0.6246456  0.7979496  0.97125348 
SexFemale     -1.9570145  1.2646982  4.48641100 
age:SexFemale -0.5937584 -0.3222434 -0.05072829 
attr(,"label") 
[1] "Fixed effects:" 
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Random Effects: 
  Level: Subject  
                          lower       est.      upper 
sd((Intercept))       2.2066308  3.3730482  5.1560298 
sd(age)               0.1848904  0.2907673  0.4572741 
cor((Intercept),age) -0.9377008 -0.8309622 -0.5808998 
 
 
 Correlation structure: 
         lower     est.       upper 
Phi -0.7559617 -0.4728 -0.04182947 
attr(,"label") 
[1] "Correlation structure:" 
 

Do NOT use CIs for SDs 
to test whether they are 0. 
Use anova + simulate. Cf 
Lab 1.

Negative!
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 Within-group standard error: 
    lower      est.     upper  
0.9000055 1.0919754 1.3248923  
 
>     VarCorr( fit )       from the G matrix 
Subject = pdLogChol(1 + age)  
            Variance   StdDev    Corr   
(Intercept) 11.3774543 3.3730482 (Intr) 
age          0.0845456 0.2907673 -0.831 
Residual     1.1924103 1.0919754        
 
To get the G matrix itself 
in a form that can be used  
in matrix expressions   
 
>      getVarCov( fit )   
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Random effects variance covariance matrix 
            (Intercept)       age 
(Intercept)    11.37700 -0.814980 
age            -0.81498  0.084546 
  Standard Deviations: 3.373 0.29077  
 

Notes on interpreting autocorrelation 
 
The estimated autocorrelation is negative. Although most natural 
processes would be expected to produce positive autocorrelations, 
occasional large measurement errors can create the appearance of a 
negative autocorrelation.  Some processes correct so that a unusually 
large value tends to be compensated by an unusually small one, e.g. 
residue in chemical process. 
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Some issues concerning autocorrelation 
 

1. Lack of fit will generally contribute positively to 
autocorrelation. For example, if trajectories are quadratic but 
you are fitting a linear trajectory, the residuals will be 
positively autocorrelated.  Strong positive autocorrelation 
can be a symptom of lack of fit. This is an example of poor 
identification between the FE model and the R model, that is, 
between the deterministic and the stochastic aspects of the 
model. See Lab 3 for a similar discussion of seasonal (FE) 
versus cyclical variation (R-side) periodic patterns. 
   

2. As mentioned above, occasional large measurement errors will 
contribute negatively to the estimate of autocorrelation. 
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3. In a well fitted OLS model, the residuals are expected to be 
negatively correlated, more so if there are few observations per 
subject. 
 

4. With few observations per subject, the estimate of 
autocorrelation (R side) can be poorly identified and highly 
correlated with G-side parameters. [See 'Additional Notes'] 

 
Looking at the data we suspect that M09 might be highly influential 
for autocorrelation. We can refit without M09 to see how the estimate 
changes. 
 
What happens when we drop M09? 
 
> fit.dropM09 <- update( fit,  
+         subset = Subject != "M09") 
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> summary( fit.dropM09 ) 
Linear mixed-effects model fit by REML 
 Data: dd  
  Subset: Subject != "M09"  
       AIC      BIC    logLik 
  406.3080 429.7545 -194.1540 
.  .  .  .  . 
Correlation Structure: AR(1) 
 Formula: ~1 | Subject  
 Parameter estimate(s): 
       Phi  
-0.1246035    still negative 
. . . . . . 
> intervals( fit.dropM09 ) 
Approximate 95% confidence intervals 
. . . . 
 Correlation structure: 
         lower       est.     upper 
Phi -0.5885311 -0.1246035 0.4010562 
attr(,"label")     but not significantly 
[1] "Correlation structure:" 
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Mixed Model in Matrices 
 
In the ith cluster: 
 

1 1

1

0

1

1

0

1

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1 1
1 1
1 1
1 1

i i

i

i

i

it it i it it

i ii i i i

i ii i i i

i ii i i i

i ii i i i

itu u

u

W

u

Wy X X X

y W X W X X
y W X W X X
y W X W X X
y W X W X X

   






   


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


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      
      
      
      
           

 
 
  



     
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 
 
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 
 
  



  y X uγ Ζ ε

 

[Could we fit this model in cluster i?] 
where 

'

~ ( , ) ~ ( , )
~ ( , )

i

i

i i

i i i i i i i

N N
N   

0 Gu ε
u ε

0 R
Ζ 0 Ζ GΖ R
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For the whole sample 
1 1 1 11 0

0N N N N N

   
   
   


  

  
        


   
   
   
      

 
u ε

u

y X Ζ
γ

y X Ζ ε


    


   

 
Finally making the complex look deceptively simple: 
 

  
 

u εy Xγ Ζ
Xγ δ

 
with

 

  

1 Var( )
Var( )

Var( ) 'N

 
 
 
 
 
  


   

  

R 0 G
R Ζ

0

u
ε δ u

R G
ε

δ V Ζ Z R


  

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Fitting the mixed model 
 
Use Generalized Least Squares on 
 

~ ( , ' )N y Xγ ΖGZ R  
 

1
1 1ˆ ˆˆ ' 'GLS


  

 
 

γ X V X X V y  

 
We need ˆGLSγ  to get V̂  and vice versa so one algorithm iterates from 
one to the other until convergence.  
 
There are two main ways of fitting mixed models with normal 
responses: 
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1. Maximum Likelihood (ML) 
 

a. Fits all of , ,γ G R  at the same time.  
 

b. Two ML fits can be used in the 'anova' function to test 
models that differ in their FE models or in their RE 
models: G and/or R. 
  

c. ML fits tend to underestimate V and Wald tests will tend 
to err on the liberal side. 
 

2. Restricted (or Residual) Maximum Likelihood 
 

a. Maximum likelihood is applied to the 'residual space' 
with respect to the X matrix and only estimates G and R, 
hence V.  The estimated V is then used to obtain the 
GLS estimate for γ . 
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b. 'anova' can only be used to compare two models with 
identical FE models. Thus 'anova' (Likelihood Ratio 
Tests) can only be applied to hypotheses about REs. 
 

c. The estimate of V tends to be better than with ML and 
Wald tests are expected to be more accurate than with 
ML. 
 

d. Thus with REML, you sacrifice the ability to perform 
LRTs for FEs but improve Wald tests for FEs. Also, 
LRTs for REs are expected to be more accurate. 
 

e. REML is the default for 'lme' and PROC MIXED in 
SAS. 
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Comparing GLS and OLS 
 
We used OLS above: 
 

  1
ˆ ' 'OLS 

γ X X X y 
 

instead of 
1

1 1ˆ ˆˆ ' 'GLS


  
 
 

γ X V X X V y  

 
How does OLS differ from GLS? 
 
Do they differ only in that GLS produces more accurate standard 
errors?  Or can ˆOLSβ  be very different from ˆGLSβ ? 
 
With balanced data they will be the same. With unbalanced data they 
can be dramatically different. OLS is an estimate based on the pooled 
data. GLS provides an estimate that is closer to that of the unpooled 
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data.  Estimation of the FE model and of RE model are highly related 
in contrast with OLS and GLMs with canonical links where they are 
orthogonal.  
 
Testing linear hypotheses in R 
 
Hypotheses involving linear combination of the fixed effects 
coefficients can be tested with a Wald test. The Wald test is 
based on the normal approximation for maximum likelihood 
estimators using the estimated variance-covariance matrix. 
 
Using the 'wald' function alone displays the estimated fixed 
effects coefficients and Wald-type confidence intervals as well as 
a test that all true coefficients are equal 0 (this is rarely of any 
interest). 
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> wald (fit) 
 numDF denDF F.value p.value 
     4    24 952.019 <.00001 
                
Coefficients     Estimate Std.Error DF   t-value p-value 
  (Intercept)   16.479081  1.050894 76 15.681019 <.00001 
  age            0.769464  0.089141 76  8.631956 <.00001 
  SexFemale      0.905327  1.615657 24  0.560346 0.58044 
  age:SexFemale -0.290920  0.137047 76 -2.122774 0.03703 
 
Continuation:    
             
Coefficients    Lower 0.95 Upper 0.95 
  (Intercept)    14.386046  18.572117 
  age             0.591923   0.947004 
  SexFemale      -2.429224   4.239878 
  age:SexFemale  -0.563872  -0.017967 
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We can estimate the response level at age 14 for Males and Females 
by specifying the appropriate linear transformation of the coefficients. 
 
>  L <- rbind( "Male at 14" = c( 1, 14, 0, 0), 
+                 "Female at 14" = c( 1, 14, 1, 14)) 
> L 
             [,1] [,2] [,3] [,4] 
Male at 14      1   14    0    0 
Female at 14    1   14    1   14 
 
>     wald ( fit, L ) 
  numDF denDF  F.value p.value 
1     2    24 1591.651 <.00001 
               
               Estimate Std.Error DF  t-value p-value Lower 0.95 
  Male at 14   27.25157  0.605738 76 44.98908 <.00001   26.04514 
  Female at 14 24.08403  0.707349 24 34.04829 <.00001   22.62413 
              Upper 0.95 
  Male at 14     28.45800 
  Female at 14   25.54392 
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To estimate the gap at 14: 
 
>   L.gap <- rbind( "Gap at 14" = c( 0, 0, 1, 14)) 
>     L.gap 
          [,1] [,2] [,3] [,4] 
Gap at 14    0    0    1   14 
 
>     wald ( fit, L.gap) 
  numDF denDF  F.value p.value 
1     1    24 11.56902 0.00235 
            
             Estimate Std.Error DF   t-value p-value Lower 0.95 
  Gap at 14 -3.167548  0.931268 24 -3.401327 0.00235  -5.089591 

            
            Upper 0.95 
  Gap at 14  -1.245504 
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To simultaneously estimate the gap at 14 and at 8 we can do the 
following. Note that the overall (simultaneous) null hypothesis here is 
equivalent to the hypothesis that there is no difference between the 
sexes. 
      
>     L.gaps <- rbind( "Gap at 14" = c( 0, 0, 1, 14), 
+                      "Gap at 8" = c( 0,0,1, 8)) 
>     L.gaps 
          [,1] [,2] [,3] [,4] 
Gap at 14    0    0    1   14 
Gap at 8     0    0    1    8 
 
>     wald ( fit, L.gaps) 
  numDF denDF F.value p.value 
1     2    24 5.83927 0.00858 
            
             Estimate Std.Error DF   t-value p-value Lower 0.95 
  Gap at 14 -3.167548  0.931268 24 -3.401327 0.00235  -5.089591 
  Gap at 8  -1.422030  0.844256 24 -1.684359 0.10508  -3.164489 
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An equivalent hypothesis that there is no difference between the sexes 
is the hypothesis that the two coefficients for sex are simultaneously 
equal to 0. The 'wald' function simplifies this by allowing a string as a 
second argument that is used to match coefficient names. The test 
conducted is that all coefficients whose name has been matched are 
simultaneously 0. 
      
>     wald ( fit, "Sex" ) 
    numDF denDF F.value p.value 
Sex     2    24 5.83927 0.00858 
                
Coefficients     Estimate Std.Error DF   t-value p-value 
  SexFemale      0.905327  1.615657 24  0.560346 0.58044 
  age:SexFemale -0.290920  0.137047 76 -2.122774 0.03703 
                
Coefficients    Lower 0.95 Upper 0.95 
  SexFemale      -2.429224   4.239878 
  age:SexFemale  -0.563872  -0.017967 

Note the equivalence of the two F-tests above. 
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Modeling dependencies in time 
The main difference between using mixed models for multilevel 

modeling as opposed to longitudinal modeling are the assumptions 
about 

it
 , plus the more complex functional forms for time effects. For 

observations observed in time, part of the correlation between  s 
could be related to their distance in time. 

R-side model allows the modeling of temporal and spatial 
dependence.  

Correlation argument R 

Autoregressive of order 1: 
corAR1( form =  
   ~ 1 | Subject) 

2 3
22

2
3 2

1
1

1
1

  
  
  
  

 
 
 
 
 
 
 
 
 
 
 
 
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Correlation argument R 
Autoregressive Moving Average 
of order (1,1) 
corARMA( form =  
   ~ 1 | Subject, 
   p = 1, q =1) 

2

2

2

1
1

1
1

  
  
  
  

 
 
 
 
 
 
 
 
 
 
 
 

 

AR(1) in continuous time 
e.g. supposing a subject with 
times 1,2, 5.5 and 102 
corCAR1( form =  
   ~ time | Subject) 

4.5 9
3.5 82

4.5 3.5 4.5
9 8 4.5

1
1

1
1

  
  
  
  

 
 
 
 
 
 
 
 
 
 
 
  

 
  

                        
2 Note that the times and the number of times – hence the indices – can change from subject to subject but 2 and have the same value. 
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G-side vs. R-side 
 
 A few things can be done with either side. But don’t do it with 

both in the same model. The redundant parameters will not be 
identifiable. For example, the G-side random intercept model is 
‘almost’ equivalent to the R-side compound symmetry model. 

 
 With OLS the linear parameters are orthogonal to the variance 

parameter. Collinearity among the linear parameters is determined 
by the design, X, and does not depend on values of parameters.  
Computational problems due to collinearity can be addressed by 
orthogonalizing the X matrix. 

 
 With mixed models the variance parameters are generally not 

orthogonal to each other and, with unbalanced data, the linear 
parameters are not orthogonal to the variance parameters. 
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 G-side parameters can be highly collinear even if the X matrix is 
orthogonal. Centering the variables of the RE model around the 
“point of minimal variance” will help but the resulting design 
matrix may be highly collinear. 

 
 G-side and R-side parameters can be highly collinear. The degree 

of collinearity may depend on the value of the parameters.    
 
 For example, our model identifies  through: 

2 3
2200 01
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       
            
       


 

 
V  

For values of  above 0.5, the Hesssian is very ill-conditioned. The 
lesson may be that to use AR, ARMA models effectively, you need 
at least some subjects observed on many occasions. 
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 R-side only: population average models 
 
 G-side only: hierarchical models with conditionally independent 

observations in each cluster 
 
 Population average longitudinal models can be done on the R-side 

with AR, ARMA structures, etc. 
 
 The absence of the G-side may be less crucial with balanced data. 

 
 The G-side is not enough to provide control for unmeasured 

between subject confounders if the time-varying predictors are 
unbalanced (more on this soon). 

 
 A G-side random effects model DOES NOT provide the equivalent 

of temporal correlation. 
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Simpler Models 
 
The model we’ve looked at is deliberately complex including 
examples of the main typical components of a mixed model. We can 
use mixed models for simpler problems. 
Using X as a generic time-varying (within-subject) predictor and W as 
a generic time-invariant (between-subject) predictor we have the 
following: 
 
 MODEL RANDOM Formula 
One-way 
ANOVA with 
random effects 

~ 1 ~ 1 | Sub 0i itit uy      

Means as 
outcomes 

~ 1 + W 
(~W)3 

~ 1 | Sub 

0

i

i i

it

tu
Wy 


 

 


 

                        
3 The model in () is equivalent in R 
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One-way 
ANCOVA with 
random effects 

~ 1 + X (~X) ~ 1 | Sub 
0

1

i it

it it
u

y X 


 
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Random 
coefficients 
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Intercepts and 
slopes as 
outcomes 

~ 1 + X  
+ W + X:W  
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Non- random 
slopes 

~ 1 + X  
+ W + X:W 
(~ X*W) 
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BLUPS: Estimating Within-Subject Effects 
 

We’ve seen how to estimate  , G and R. Now we consider 0

1

i
i

i

 
 
 
  

 . 

 
We’ve already estimated i  using the fixed-effects model with a OLS 
regression within each subject. Call this estimator:  î . How good is 
it? 

1
'ˆVar( )i i i i  


  
 
 

  X X  

 
Can we do better? We have another ‘estimator’ of i . 
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Suppose we know  s for the population. We could also predict4 i  by 
using the within Sex mean intercepts and slopes, e.g. for Males we 
could use:

1







 
 
 

 with error variance: 

 
0 00

1 10

Var i

i

 
 

    
     

    
G  

 
We could then combine î  and 

1







 
 
 

 by weighting then by inverse 

variance (= precision). This yields the BLUP (Best Linear Unbiased 
Predictor): 

   
11 11 11 ' 1 '

1

ˆ
i i i i i


  



     



                     
G X X G X X  

                        
4 Non-statisticians are always thrown for a loop when we ‘predict’ something that 
happened in the past. We use 'predict' for things that are random, 'estimate' for 
things that are 'fixed'. Orthodox Bayesians always predict.  
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If we replace the unknown parameters with their estimates, we get the 
EBLUP (Empirical BLUP): 
 

   
11 11 11 ' 1 '

1

ˆˆ ˆ ˆˆ ˆ
ˆi i i i i i


   



     



                      
G X X G X X  

 
The EBLUP ‘optimally’ combines the information from the ith cluster 
with the information from the other clusters. We borrow strength 
from the other clusters. 
The process ‘shrinks’ î  towards 

1

ˆ
ˆ






 
 
 

 along a path determined by the 

locus of osculation of the families of ellipses with shape Ĝ around 
1

ˆ
ˆ






 
 
 

 

and shape   1'ˆ i i
 

  
X X  around î . 
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The slope of the BLUP 
is close to the population 
slope 
 
but  
 
the level of the BLUP is 
close to the level of the 
BLUE 
 
This suggests that G has 
a large variance for 
intercepts and a small 
variance for slopes 
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Population estimate 
BLUE and BLUP 
in beta space 
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The marginal dispersion 
of BLUEs comes from: 
 

2 ' 1
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 Var( )i  G    [population 

var.] 
 2 ' 1ˆVar( | ) ( )i i i i    X X  

[cond’l var. 
resampling from ith 
subject] 

 ˆE( | )i i i     [BLUE] 
 

 

slope

In
t

5

10

15

20

25

0.5 1.0 1.5 2.0

Male

0.5 1.0 1.5 2.0

Female

Popn BLUE BLUP



 76 

 

 

 
 
So: 
 

 

 
2 ' 1

ˆ ˆVar( ) Var(E( | ))
ˆE Var( | )

Var( )
ˆE Var( | )

( )

i i i

i i

i

i i

i i

  

 



 

 

 





 G X X
 

 

slope

In
t

5

10

15

20

25

0.5 1.0 1.5 2.0

Male

0.5 1.0 1.5 2.0

Female

Popn BLUE BLUP



 77 

 
 
 
While the expected 
variance of the BLUEs 
is larger than G 
 
the expected variance of 
the BLUPs is smaller 
than G. 
 
Beware of drawing 
conclusions about G 
from the dispersion of 
the BLUPs.  
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The estimate of G can 
be unstable and often 
collapses to singularity 
leading to non-
convergence for many 
methods.  
Possible remedies:  
- Recentre X near point 
of minimal variance,  
- Use a smaller G 
- Change the model 
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Where the EBLUP comes from : looking at a single subject  
 

Note that the EBLUP’s 
slope is close to the slope 
of the population estimate 
(i.e. the male population 
conditioning on between-
subject predictors) while 
the level of the line is 
close to level of the 
BLUE.  
 
The relative precisions of 
the BLUE and of the 
population estimate on 
slope and level  are 
reflected through the 
shapes of G and 2 ' 1( )i i X X  
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The same picture in 
“beta-space” 
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The population 
estimate with a SD 
ellipse. 
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The population 
estimate with a SD 
ellipse 
 
and  
 
the BLUE with its 
SE ellipse 
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The EBLUP is an Inverse 
Variance Weighted mean 
of the BLUE and of the 
population estimate. 
 
We can think of taking the 
BLUE and ‘shrinking’ it 
towards the population 
estimate along a path that 
optimally combines the 
two components. 
 
The path is formed by the 
osculation points of the 
families of ellipses around 
the BLUE and the 
population estimate.
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The amount and direction 
of shrinkage depends on 
the relative shapes and 
sizes of  
 
G 
 
and 

2
2 ' 1 1ˆVar( | ) ( )

ii i i
i

i
T
     XX X S

 
The BLUP is at an 
osculation point of the 
families of ellipses 
generated around the 
BLUE and population 
estimate. 
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Imagine what could 
happen if G were 
oriented differently: 
 
Paradoxically, both the 
slope and the intercept 
could be far outside the 
population estimate and 
the BLUE. 
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When is a BLUP a BLUPPER? 
 
The rationale behind BLUPs is based on exchangeability. No outside 
information should make this cluster stand out from the others and the 
mean of the population deserves the same weight in prediction for this 
cluster as it deserves for any other cluster that doesn’t stand out. 
 
If a cluster stands out somehow, then the BLUP might be a 
BLUPPER. 
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Interpreting G 
 
The parameters of G give the variance of the intercepts, the variance 
of the slopes and the covariance between intercepts and the slopes.  
 
Would it make sense to assume that the covariance is 0 to reduce the 
number of parameters in the model? To address this, consider that the 
variance of the heights of individual regression lines a fixed value of 
X is:   
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Summarizing: 
 

2
1 00 01 11Var( ) 2X g g X g X        

 
is quadratic function of X. 
 
 
 
So 1Var( )X     has a minimum at 01

11

g
g  

 

and the minimum variance is 
2
01

00
11

gg g  
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Thus, assuming that the covariance is 0 is equivalent to 

assuming that the minimum variance occurs when X = 0.  This is 
an assumption that is not invariant with location transformations of 
X.  It is similar to removing a main effect that is marginal to an 
interaction in a model, something that should not be done without a 
thorough understanding of its consequences. 

 
 

Example: Let 20
1



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   
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 and 10.5 1
1 0.1

 
   

G  
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A sample of lines in 
beta space 
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The same lines in 
data space. 

X

Y

0

5

10

15

20

25

5 10 15 20 25



 92 

 
 
The same lines in 
data space with the 
population mean 
line and lines at one 
SD above and 
below the 
population mean 
line 
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The parameters of 
G determine the 
location and value 
of the minimum 
standard deviation 
of lines 
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With two time-varying variables with random effects, the G matrix 
would look like: 
 

0 00 01 02
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The point of minimum variance is located at: 
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Differences between lm (OLS) and lme (mixed model) with 
balanced data 
 
Just looking at regression coefficients: 
 
> fit.ols <- lm( distance ~ age * Sex, dd) 
> fit.mm <- lme( distance ~ age * Sex, dd, 
+       random = ~ 1 + age | Subject) 
> summary(fit.ols) 
 
Call: 
lm(formula = distance ~ age * Sex, data = dd) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.6156 -1.3219 -0.1682  1.3299  5.2469  
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Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)    16.3406     1.4162  11.538  < 2e-16 
age             0.7844     0.1262   6.217 1.07e-08  
SexFemale       1.0321     2.2188   0.465    0.643    
age:SexFemale  -0.3048     0.1977  -1.542    0.126    
. . . 
> summary(fit.mm) 
. . .        
Fixed effects: distance ~ age * Sex  
                  Value Std.Error DF   t-value p-value 
(Intercept)   16.340625 1.0185320 79 16.043311  0.0000 
age            0.784375 0.0859995 79  9.120691  0.0000 
SexFemale      1.032102 1.5957329 25  0.646789  0.5237 
age:SexFemale -0.304830 0.1347353 79 -2.262432  0.0264 
 
Note that going from OLS to MM, precision shifts from between-
subject comparisons to within-subject comparisons. When data are 
balanced, lm (OLS) and lme (mixed models) produce the same ̂ s 
with different SEs.   
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Take 2: Learning lessons from unbalanced 
data 
 
What can happen with unbalanced data?  
 
Here is some data that is similar to the Pothoff and Roy data but with: 
 
 different age ranges for different subjects 
 
 a between-subject effect of age that is different from the within-

subject effect of age 
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> head(du) 
         y  x id xb xw Subject    Sex age 
1 12.37216  8  1 11 -3     F09 Female   8 
2 11.20801 10  1 11 -1     F09 Female  10 
3 10.44755 12  1 11  1     F09 Female  12 
4 10.43831 13  1 11  2     F09 Female  13 
5 14.13549  9  2 12 -3     F11 Female   9 
6 13.47965 11  2 12 -1     F11 Female  11 
 
 
> tail(du) 
           y  x id xb xw Subject  Sex age 
103 35.67045 37 26 36  1     M08 Male  37 
104 35.70928 38 26 36  2     M08 Male  38 
105 38.81624 34 27 37 -3     M10 Male  34 
106 37.87866 36 27 37 -1     M10 Male  36 
107 36.22499 38 27 37  1     M10 Male  38 
108 35.62520 39 27 37  2     M10 Male  39 
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Using age centered at 
25. 
 
Why? Like the ordinary 
regression model, the 
mixed model is 
equivariant under 
global centering but 
convergence may be 
improved because the G 
matrix is less eccentric. 
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R code and output 
> fit <- lme( y ~ age * Sex, du,  
+           random = ~ 1 + age| Subject) 
> summary( fit ) 
Linear mixed-effects model fit by REML 
 Data: du  
       AIC      BIC    logLik 
  374.6932 395.8484 -179.3466 
 
Random effects: 
 Formula: ~1 + age | Subject 
 Structure: General positive-definite, Log-
Cholesky parametrization 
            StdDev     Corr   
(Intercept) 9.32672995 (Intr) 
age         0.05221248 0.941  
Residual    0.50627022        
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Fixed effects: y ~ age * Sex  
                  Value Std.Error DF    t-value p-value 
(Intercept)    40.26568  2.497546 79  16.122095  0.0000 
age            -0.48066  0.035307 79 -13.613685  0.0000 
SexFemale     -14.01875  3.830956 25  -3.659333  0.0012 
age:SexFemale   0.05239  0.055373 79   0.946092  0.3470 
 
 Correlation:  
              (Intr) age    SexFml 
age           -0.007               
SexFemale     -0.652  0.005        
age:SexFemale  0.005 -0.638  0.058 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.10716969 -0.54148659 -0.02688422  0.59030024  2.14279806  
 
Number of Observations: 108 
Number of Groups: 27  
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Between, Within and Pooled Models 
 

 
We first focus on one 
group, the female data: 
 
What models could we fit 
to this data? 
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marginal SD ellipse
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Regressing with the  
pooled data – ignoring 
Subject – yields the  
marginal (unconditional) 
estimate of the slope: P̂  
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marginal regression line
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We could replace each 
Subject by its means for x 
and y and use the resulting 
aggregated data with one 
point for each Subject. 
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dispersion ellipse of subject means
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Performing a regression 
on the aggregated data 
yields the ‘between-
subject’ regression, in 
some contexts called an 
‘ecological regression’ 
estimating, in some 
contexts, the 
'compositional effect' of 
age. 
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regression on subject means = ecological regression
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We can combine all 
within-subject regressions 
to get a combined estimate 
of the within-subject 
slope. This is the estimate 
obtained with a fixed-
effects model using age 
and Subject additively.  
Equivalently, we can 
perform a regression using 
(the within-subject 
residuals of y minus mean 
y) on (age minus mean 
age). 
 
Q: Which is better: ̂, W̂ or

P̂ ? 
. 
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within-subject regression
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A: None. They answer 
different questions. 
Typically, P̂  would be 
used for prediction across 
the population; W̂  for 
‘causal’ inference 
controlling for between-
subject confounders, 
assuming that all 
confounders affect all 
observations similarly. 
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within-subject regression
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The relationship among 
estimators: 
 

P̂  combines ̂ and W̂ : 
 

   1
P B W B B W W

ˆ ˆ ˆW W W W      
  
The weights depend only 
on the design ( X matrix), 
not of estimated variances 
of the response. 
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The Mixed Model 
The mixed model 
estimate5 also combines 
̂ and W̂ : 
 

 
 

1MM
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ˆ
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W W
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but with a lower weight on 
̂: 
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Note that 
MM

B BW W  
                        
5 Using a random intercept model 
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 The mixed model estimator is a variance optimal combination of ̂ 

and W̂ . 
 It makes perfect sense if  ̂ and W̂  estimate the same thing, i.e. if

W   ! 
 Otherwise, it’s an arbitrary combination of estimates that estimate 

different things. The weights in the combination have no 
substantive interpretation. 

 i.e. it’s an optimal answer to a meaningless question. 
 
Summary of the relationships among 4 models: 
 

Model Estimate of slope Precision
Between Subjects ̂ BW

Marginal (pooled data) P̂   
Mixed Model MM̂   
Within Subjects W̂  WW
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The pooled estimate combines ̂ and W̂ : 
 

1
P B W B B W W

ˆ ˆ ˆW W W W            


    

 
Mixed model 
 
With a random intercept model: 
   1 0 0, 00~ (0, ), ~ (0, )i iit iit it tu uy X N g N   

     
 
with 00 ,g    known MM̂  is also a weighted combination of ̂ 
and W̂  but with less weight on ̂: 
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Within-Subject Informationmonotone

TW W
T g

f W








 
  
 




 
 

 
 

 MM̂  is between W̂  and P̂ , i.e. it does better than P̂  in the sense 
of being closer to W̂ but is not equivalent to W̂ . 
 

 With balanced data  W MM P P
ˆ ˆ ˆ ˆ       

 
 As 

00

1 0
T g
 

  , MM W
ˆ ˆ  , so a mixed model estimates the 

within effect asymptotically in T – which is the cluster size 
NOT the number of clusters. 
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 As 
00

1
T g
 

  , MM B
ˆ ˆ  . Thus the mixed model estimate fails 

to control for between-subject confounding factors. Note that 
this does not capture the whole story because W̂   and B̂  are not 
independent of 

00
g . If 

00
0g   then 

B W  so that 
MM B W     
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A serious a problem? a simulation 
 
 
 
1,000 simulations 
showing 
mixed model estimates 
of slope 
using the same 
configuration of Xs with  

W 1/ 2    and B 1  ,  
keeping 00 1/ 2g   and  
allowing  
  to vary from 0.005 to 
5  
 
 



̂
1

-0.5

0.0

0.5

1.0

0 1 2 3 4 5
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What happened? 
 
As   gets larger,  
the relatively small 
value of 00g  is harder to 
identify  
and  
both sources of 
variability  
(within-subject and 
between-subject)   
are attributed to  . 
 
 
 



̂

0

2

4

6

0 1 2 3 4 5
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The blue line is the 
diagonal ̂   and the 
equation of the red line 
is ˆ 1   . 
 
When 00ˆ 0g  , the 
between- subject 
relationship is treated as 
if it has very high 
precision and it 
dominates in forming 
the mixed model 
estimate. 

 
  



̂

0

2

4

6

0 1 2 3 4 5
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Splitting age into two variables 
 
Since age has a within-subject effect that is inconsistent with its 
between-subject effect we can split it into two variables: 
 

1. Between-subject ‘contextual predictor’: e.g. age.mean of each 
subject (or the starting age), and 

 
2. within-subject predictor: 

 
a. age itself or 
b. within-subject residual: age.resid = age – age.mean 

 
So we model: 
 

.E( ) .age mean ageit i it ity age mean age        
 

or 
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* * *

.0 .E( ) . .age meanit i it itage diffy age mean age diff        
 
Surprisingly 
 
 

*
. ageage diff   

 
but 
 

* *
. . .

.

age mean age mean age diff

age mean age

  
 

 

 
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*
.

.

age mean

age mean age


  

 

 
*

.age mean  keeps 
age.diff constant 
 

.age mean  keeps age 
constant 
 

 

 

9 10 11 12

9
10

11
12

age

y

age  age.diff
*

age.mean 

age.mean
*

Compositional effect
= Contextual effect 

+ Within-subject effect
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Using 'lme' with a contextual mean 
 
> fit.contextual <- lme(  
+          y ~ (age + cvar(age,Subject) ) * Sex, 
+          du, 
+          random = ~ 1 + age | Subject) 
 
> summary(fit.contextual) 
Linear mixed-effects model fit by REML 
 Data: du  
       AIC      BIC    logLik 
  296.8729 323.1227 -138.4365 
 
Random effects: 
 Formula: ~1 + age | Subject 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev     Corr   
(Intercept) 1.53161007 (Intr) 
age         0.03287630 0.024  
Residual    0.51263884        
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Fixed effects: y ~ (age + cvar(age, Subject)) * Sex  
                                 Value Std.Error DF    t-value 
(Intercept)                  -3.681624 1.6963039 79  -2.170380 
age                          -0.493880 0.0343672 79 -14.370670 
cvar(age, Subject)            1.628584 0.0695822 23  23.405165 
SexFemale                     6.000170 2.5050694 23   2.395211 
age:SexFemale                 0.060143 0.0538431 79   1.116996 
cvar(age, Subject):SexFemale -0.313087 0.1266960 23  -2.471167 
                             p-value 
(Intercept)                   0.0330 
age                           0.0000 
cvar(age, Subject)            0.0000 
SexFemale                     0.0251 
age:SexFemale                 0.2674 
cvar(age, Subject):SexFemale  0.0213 
  
. . . . . 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-1.871139553 -0.502221634 -0.006447848  0.552360837  2.428148053  
 
Number of Observations: 108 
Number of Groups: 27  
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> fit.compositional <- lme( y ~ (dvar(age,Subject) +  
+       cvar(age,Subject) ) * Sex, du, 
+       random = ~ 1 + age | Subject) 
> summary(fit.compositional) 
Linear mixed-effects model fit by REML 
 Data: du  
       AIC      BIC    logLik 
  296.8729 323.1227 -138.4365 
 
Random effects: 
 Formula: ~1 + age | Subject 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev     Corr   
(Intercept) 1.53161006 (Intr) 
age         0.03287629 0.024  
Residual    0.51263884        
 
Fixed effects: y ~ (dvar(age, Subject) + cvar(age, Subject)) * Sex  
                                 Value Std.Error DF    t-value 
(Intercept)                  -3.681624 1.6963039 79  -2.170380 
dvar(age, Subject)           -0.493880 0.0343672 79 -14.370670 
cvar(age, Subject)            1.134704 0.0616092 23  18.417778 
SexFemale                     6.000170 2.5050694 23   2.395211 
dvar(age, Subject):SexFemale  0.060143 0.0538431 79   1.116996 
cvar(age, Subject):SexFemale -0.252945 0.1161225 23  -2.178257 



 134

                             p-value 
(Intercept)                   0.0330 
dvar(age, Subject)            0.0000 
cvar(age, Subject)            0.0000 
SexFemale                     0.0251 
dvar(age, Subject):SexFemale  0.2674 
cvar(age, Subject):SexFemale  0.0399 
 
. . . . . 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-1.871139550 -0.502221640 -0.006447847  0.552360836  2.428148063  
 
Number of Observations: 108 
Number of Groups: 27  
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Simulation Revisited 
 
 
1,000 simulations 
using the same 
models as the 
earlier simulation, 
i.e. 
the same 
configuration of Xs 
with  

W 1/ 2    and B 1  ,  
keeping 00 1/ 2g   
and  
allowing  
  to vary from 
0.005 to 5  
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Here a mixed 
model is used with 
mean age by 
subject and the 
within-subject 
residual of age 
from mean age. 



  
   

   
  ̂

W
   

   
   

   
   

   
   

   
   

   
 ̂

B

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5



 137

 
 
 
 
 
Including the 
contextual variable 
gives better 
estimates of 
variance 
components. The 
estimate of   does 
not eventually 
include 00g  
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Power 
 
The best way to carry out power calculations is to simulate. You end 
up learning about a lot more than power. 
 
Nevertheless, Stephen Raudenbush and colleagues have a nice 
graphical package available at Optimal Design Software. 
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Some links 
 
 There is a very good current bibliography as well as many other 

resources at the UCLA Academic Technology Services site. Start 
your visit at 
http://www.ats.ucla.edu/stat/sas/topics/repeated_measures.htm 

 
 Another important site is the Centre for Multilevel Modeling, 

currently at the University of Bristol:  
http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-

support/news.shtml 
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A few books 
 
 Pinheiro, Jose C. and Bates, Douglas M. (2000) Mixed-Effects 

Models in S and S-PLUS. Springer 
 

 Fitzmaurice, Garrett M., Laird, Nan M., Ware, James H. (2004) 
Applied Longitudinal Analysis, Wiley. 

 
 Allison, Paul D. (2005) Fixed Effects Regression Methods for 

Longitudinal Data Using SAS, SAS Institute. 
 
 Littell, Ramon C. et al. (2006) SAS for Mixed Models (2nd ed.), 

SAS Institute. 
 
 Singer, Judith D. and Willett, John B. (2003)  Applied Longitudinal 

Data Analysis : Modeling Change and Event Occurrence. Oxford 
University Press. 
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Appendix: Reinterpreting weights 
 
The mixed model estimate using a random intercept model can be seen 
either as a weighted combination of ̂ and W̂  or of P̂  and W̂  
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