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 Generalized Linear Mixed Models (GLMMs) generalize Generalized Linear Models 
(GLMs) to Mixed Models as  
Linear Mixed Models (LMMs, HLMs) generalize Linear Models (LMs) to Mixed 
Models. 
 

 They allow modeling a non-normal response with a model that incorporates random 
effects. 

 However, the ratio of complexity GLMM
GLM

 is much greater than that of LMM
LM

 

 The reason is that integrating out the unseen random effects in the LMM is 
relatively easy thanks to the good behaviour of the normal distribution. 
 

 Except in a few special cases the random effects don't integrate out easily in 
GLMMs and various approximations need to be used. This is an active area of 
research and good practice is far from settled. 
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There are many functions in R that can be used for GLMMs. Some key ones: 
 

Function Approach 
glmmPQL 
in MASS, nlme 

A marriage of glm and lme using Penalized Quasi 
Likelihood: easy to use with familiar syntax of glm and lme. 
Based on PQL algorithm which is robust but breaks down with 
small clusters of binary data with probabilities near 0 or 1.  
Can use both R side and G side models. 

lmer 
in lme4 

Newer package by Doug Bates especially strong with 
crossed random (not necessarily nested) random effects. 
Uses Gauss-Hermite quadrature considered more accurate 
than PQL. No R side. Simpler G structures than in glmmPQL 
(lme) 

MCMCglmm 
in MCMCglmm 

Uses faster Markov Chain Monte Carlo.  Fits censored and zero-
inflated model. R and G side. 
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The matrix formulation: 

 
 If G is an exponential family with link function g, then the GLMM for hierarchical data 

is a ‘true’ model with a likelihood. 
 The ML solution for the GLM can be found easily with Iteratively ReWeighted Least-Squares 

(IRWLS). 
 However the ML solution for the hierarchical GLMM requires integrating over the unobserved  

random effects ju  – relatively easy with a Gaussian model, much harder in general. 
In practice, we use various approximations. We will look at glmmPQL, glmer and 
MCMCglmm. 

 Some approaches, e.g. MCMCglmm, add an ~ (0, )j jN Rε  which doesn’t seem to fit with 
GLMs but can be a real boon.   
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Methods for fitting GLMMs: (from glmm.wikidot.com/faq) 

(adapted from Bolker et al TREE 2009) 

Penalized 
quasi-likelihood 

Flexible, widely 
implemented 

Likelihood inference may be inappropriate; 
biased for large variance or small means 
PROC GLIMMIX (SAS), GLMM (GenStat), 
glmmPQL (R:MASS), ASREML-R 

Laplace 
approximation 

More accurate 
than PQL 

Slower and less flexible than PQL 
glmer (R:lme4,lme4a), glmm.admb 
(R:glmmADMB), AD Model Builder, HLM 

Gauss-Hermite 
quadrature 

More accurate 
than Laplace 

Slower than Laplace; limited to 2-3 
random effects 
PROC NLMIXED (SAS), glmer (R:lme4, 
lme4a), glmmML (R:glmmML), xtlogit 
(Stata) 
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Markov chain 
Monte Carlo 

Highly flexible, 
arbitrary number 
of random effects; 
accurate 

Very slow, technically challenging, 
Bayesian framework 
MCMCglmm (R:MCMCglmm), MCMCpack 
(R), WinBUGS/OpenBUGS (R interface: 
BRugs/R2WinBUGS), JAGS (R interface: 
rjags/R2jags), AD Model Builder (R 
interface: R2admb), 
glmm.admb1 (R:glmmADMB) 
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glmmPQL	
oAdvantages: easy syntax like lme: 

 
 
 
 

fit <-  glmmPQL( y ~ x + z, data = dd, 
family = binomial, 
random = ~ 1 + x | id) 

 
 
 
 

converges relatively easily, easy Wald tests for linear parameters, 
generalizes to GLMM for Longitudinal Data. 
The syntax is exactly the same as for lme except for the family argument. 

 
 
 

oDisadvantage: Performs poorly with small binary clusters. Other methods take 
more time but may be more accurate. Solution is not a maximum likelihood. 
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Consider 4,152 daily records of headache logs kept by 133 patients in a 
treatment program in which bio-feedback was used to attempt to reduce 
migraine frequency and severity. Patients entered the program at different times 
over a period of about 3 years. Patients were encouraged to begin their logs four 
weeks before the onset of treatment and to continue for one month afterwards, 
but only 55 patients have data preceding the onset of treatment. 

 
 
 
  
Usage: > library( spidadev ) # loads MASS and nlme for glmmPQL  

> data( migraines ) 
> ?migraines 
> ds <- migraines 
> xqplot(ds) 
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> ds$treat <- (ds$time > 0)*1 
 

Create a dummy variable for treatment 
 
 

> fit <- glmmPQL ( ha ~ treat, data = ds, 
+ random = ~ 1 | id, 
+ family = binomial) 
iteration 1 
. . . 
iteration 5 
> summary(fit) 
Linear mixed-effects model fit by maximum likelihood 
Data: ds 
AIC BIC logLik 
NA NA NA 

 
 

Random effects: 
Formula: ~1 | id 

 

NAs warn you that the fit is not really 
maximum likelihood 

(Intercept) Residual 
StdDev: 1.479865 0.9410313 

 
 

Variance function: 
Structure: fixed weights 
Formula: ~invwt 
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Fixed effects: ha ~ treat 

Value Std.Error DF t-value p-value
(Intercept) 0.8477543 0.1621571 4018 5.227980 0.0000
treat -0.0164957 0.1038301 4018 -0.158872 0.8738

 
. . . 

 
 

Number of Observations: 4152 
Number of Groups: 133 

 
 

The model used is a GLM with family = binomial, i.e. a logistic regression. 
 
 

logit(Pr(ha))  0.840.016treat 
 
 

So the treatment reduces odds of headache to 
exp(0.016)  0.984  98% , 

i.e. a reduction of 2% 
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Overall view of the effect of treatment 
xyplot( ha ~ time, ds, panel = function(x, y, ...) { 

panel.xyplot( x, jitter(y),...) 
panel.loess( x, y, ..., family = 'gaussian')}) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seems to make people worse before they get better (slightly) 
Maybe it’s short-term pain for long-term gain. 

12



 

  
> ds$tdays <- ds$time / 10 
> 
> # create a spline function: 

 
 
> sp <- function(x) gsp( x, 
+ knots = c(0,5,10,30,50)/10, 
+ degree = c(1,2,2, 2, 2 ,1), 
+ smooth = c(-1,1,1, 1, 1)) 

 

 

> fit <- glmmPQL ( ha ~ sp(tdays), data = ds, 
+ random = ~ 1 | id, 
+ family = binomial) 
iteration 1 
iteration 2 
iteration 3 
iteration 4 
iteration 5 
> summary(fit) 
Linear mixed-effects model fit by maximum likelihood 
Data: ds 
AIC BIC logLik 
NA NA NA 

 
 
Random effects: 
Formula: ~1 | id 

(Intercept) Residual 
StdDev:   1.568552 0.9406108 
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Variance function: 
Structure: fixed weights 
Formula: ~invwt 

Fixed effects: ha ~ sp(tdays) 
Value Std.Error DF t-value p-value 

(Intercept)  0.720987 0.211794 4012 3.404190 0.0007  
sp(tdays)D1(0) -0.122074 0.110583 4012 -1.103906 0.2697 
sp(tdays)C(0).0  1.448669 0.429678 4012 3.371521 0.0008 
sp(tdays)C(0).1 -3.241710 2.275235 4012 -1.424780 0.1543 
sp(tdays)C(0).2  5.976928 5.544150 4012 1.078060 0.2811 
sp(tdays)C(0.5).2 -6.482328 6.792881 4012 -0.954283 0.3400 
sp(tdays)C(1).2  0.863025 1.594558 4012 0.541231 0.5884 
sp(tdays)C(3).2 -0.498702 0.213875 4012 -2.331749 0.0198 

 
 
 
Number of Observations: 4152
Number of Groups: 133 

 
 
 

> pred <- expand.grid( time = seq(-30,50,.5)) 
 

> 
 

pred$tdays <- pred$time / 10 
 

> 
 

pred$ha.logit <- predict( fit, pred, level = 0)
 
> xyplot( ha.logit ~ time, pred, type = 'l') 
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> pred$ha.prob <- 1/(1+exp( -pred$ha.logit)) 

 
 
> xyplot( ha.prob ~ time, pred, type = 'l') 
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Is there a significant difference between, say, -10 days, and 
30 days? 
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sc(sp, x, D = 0, type = 1) 
 
 

generates a portion of an L matrix. 
sp – spline 
x - where spline should be evaluated 
D - what to evaluate: 

0: value 
1: slope 
2: curvature, etc. 

type – at a knot: 
type =  0: on  the  left, 
type = 1: on the right, 
type = 2: ‘saltus’: right – left 
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> Lp <- sc(sp,x = c(-10,30)/10, D = 0)
> Lp    

oefficients Estimate Std.Error DF t-value p-value
(Intercept) 0.720987 0.211590 4012 3.407474 0.00066
sp(tdays)D1(0) -0.122074 0.110477 4012 -1.104971 0.26924
sp(tdays)C(0).0 1.448669 0.429264 4012 3.374774 0.00075
sp(tdays)C(0).1 -3.241710 2.273042 4012 -1.426155 0.15390
sp(tdays)C(0).2 5.976928 5.538806 4012 1.079100 0.28061
sp(tdays)C(0.5).2 -6.482328 6.786334 4012 -0.955203 0.33953
sp(tdays)C(1).2 0.863025 1.593021 4012 0.541754 0.58802
sp(tdays)C(3).2 -0.498702 0.213669 4012 -2.333998 0.01964

 
 
 
 
 
 

 D1(0) C(0).0 C(0).1 C(0).2 C(0.5).2 C(1).2 C(3).2
g(-1) -1 0 0 0.0 0.000 0 0
g(3+) 3 1 3 4.5 3.125 2 0

 
> wald(fit) 
numDF denDF F.value p.value 

8 4012 15.43282 <.00001 
 
C 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

> Lm <- cbind(0,Lp)  
> Ldiff <- rbind( Lm, diff= Lm[2,] - Lm[1,])
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>  Ldiff 
             D1(0) C(0).0 C(0).1 C(0).2 C(0.5).2  C(1).2  C(3).2 
g(-1)     0     -1      0      0    0.0    0.000       0       0  
g(3+)     0      3      1      3    4.5    3.125       2       0  
 diff     0      4      1      3    4.5    3.125       2       0 
 
> wald(fit, Ldiff) 
 numDF denDF F.value p.value
1 2 4012 5.930952 0.00268

 
 

 Estimate Std.Error DF t-value p-value
g(-1) 0.122074 0.110477 4012 1.104971 0.26924
g(3+) -0.277731 0.183149 4012 -1.516422 0.12949
diff -0.399805 0.130583 4012 -3.061687 0.00222
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MCMCglmm	
	
What’s a Markov Chain? A sequence of random variables (or vectors) where the 
distribution for the next one in the sequence (‘chain’) depends on the past only through the 
most recent value of the variable, i.e. the future depends on the past values of the variable 
(vector) only through the present values of the variable (vector). This is more general than it 
seems. If the next value depends on today’s and yesterday’s, we simply redefine the MC so 
it’s a vector of values for two successive days. 
 
What’s a Monte Carlo Markov Chain? A Markov Chain generated by a computer. 
 
What’s Markov Chain Monte Carlo? The process (and its study) of producing a Monte 
Carlo Markov Chain.  Just say MCMC and you won’t have to think about this. 
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What’s so hot about Markov Chain Monte Carlo? It accomplishes the seemingly 
impossible … but only by going to an awful lot of trouble.  
 
From Andrieu (2003): 
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Example:  
 Let’s say you really want to sample a bivariate distribution for (Y1,Y2).  Note that Y here 

is generic and the principle works with anything random (vector or variable): Ymis, 
, ,u  .  

 But you can’t: you don’t have a way of generating random (Y1,Y2). 
 But you do know something:  

o You know to generate Y1 given Y2 and  
you know how to generate Y2 given Y1.  
You can do conditionals but you can’t do the joint or the marginal. 
You could generate random values, but you can’t get started. 
 Note 1: This is not far fetched: This is exactly the problem with Ymis and   in the 

missing data problem. And in many other problems. 
 Note 2: If you knew how to generate either marginally, say Y1, then you could 

easily generate Y2 given Y1 and that would give you a sample for (Y1,Y2).  
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 Solution:  
o Since you can’t generate a random Y1 to get started, just make it up! 
o Then keep going back and forth: Y2 from Y1, and then Y1 from Y2 and keep going for 

a very long time.  Under the right conditions, eventually, the starting value that you 
made up won’t matter and the (Y1,Y2) you get will be a random observation from the 
joint distribution. [burnin time] 

o If you want more than one random observation, you can keep going but observations 
are dependent on each other so if you want them nearly independent, you will need to 
wait a while between the random observations you choose.  [thinning the chain] 

o The right conditions?   
 No isolated islands of high probability surrounded by seas of low or no 

probability. Otherwise you’ll be stuck on an island for a long time until your 
MCMC discovers the canoe. You might never discover that the world is really a 
larger place. 
 Also, no single probability peak where you might get stuck.   
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How	to	tell	if	it’s	working:	
o How do you know how long to burnin and to thin?  
o How do you know whether the results make sense? 

 

Example:	
 
 Suppose you want to generate a random sample from the bivariate Normal with mean  

(5,5), standard deviation 2 and correlation 0.95 
 But you haven’t yet discovered how to do this. However, you know how to generate a Y2 

given Y1 and Y1 given Y2. Recall the missing data problem as an example: 
o If I knew Ymis I could estimate   and if I knew   I could impute Ymis. Given Y1 , I 

could estimate beta. 
 If only I could get started there’d be no problem because P(A) x P(B|A) = P( A and B). 
 The MCMC solution: Start with a guess. 
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The MCMC hope: 
 Eventually the initial choice won’t matter [burnin time] 
 If you pick random observations far enough from each other, they will be close to 

independent: [thinning] 
 
A fundamental principle: 
 Under some conditions, if you know all the conditional distributions of each variable 

given the others and there is a joint distribution that is consistent with these conditionals, 
then that joint distribution is unique, i.e. if there is one, there is only one. 

The craft of MCMC: 
a) Is it working? 
b) What’s the right burnin? How long do I have to wait? 
c) What’s the right thinning? How many do I skip? 

Will depend: mainly on the dependence of Y1 on Y2.  If independent, the conditional = 
marginal and we really knew the marginal all along. We can take burnin = 1, thinning = 
1/1. 
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The mean of Y1 in the sample is 5.902 
 
The SE of the mean is: 

 1 2 0.220
83n


   

So the mean of the sample is  

             5.902 5 4.1
0.220


  

SEs away from the population mean, 
which is much too large for such a 
sample. 
But the points in the sample are not 
independent. Using autocorrelation the 
effective sample size is: 
 

>   effectiveSize( Ysample) 
    var1     var2  
8.109846 9.606072 
  

so the mean is only 1.28 SEs away. 
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MCMC	diagnostics	
> Ysample <- mcmc(Ysample) 
> plot(Ysample) 

 
 

> Zsample <- mcmc( matrix( rnorm(2*83), 
ncol = 2)) 
> effectiveSize(Zsample) 
var1 var2  
  83   83  
> plot(Zsample) 
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Using	MCMCglmm	
 
Distributions for response: 

Base Modifications 
poisson zipoisson, cenpoisson, zapoisson, ztpoisson, hupoisson 
categorical [binomial logistic or multinomial with factor as response 

variable] 
ordinal [binomial probit] 
exponential cenexponential 
binomial, 
multinomialJ 

zibinomial [multinomialJ with J columns for category 
counts]  

gaussian cengaussian 
geometric  
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Modifications: 
cen censoring: some values can be at floor or 

ceiling, can vary from case to case 
zi zero-inflated, e.g. 0’s over and above what 

you would expect from a Poisson as shown 
by the frequencies of values >0. 

za zero-altered: Could be too many or too few 
zeros 

zt zero-truncated: Only observe values >0 and 
shape of Poisson for Y > 0 gives appropriate 
probabilities 

hu hurdle: binomial to determine 0 or >0, zt if 
greater 

 
Note 1: No negative binomial: but to the extent that the negative binomial is used to have an 
extra parameter for overdispersion, MCMCglmm might be better when its model is faithful 
to dynamics of process. 
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Note 2: Can handle multivariate with different distributions!! 
E.g. one component gaussian, other binomial. ‘family’ distributions can be supplied as 
variable in data frame. 

Note 3: What it won’t do: non-linear models, but maybe we can try to manage with splines 

Multivariate Generalised Linear Mixed Models 

Description 

Markov chain Monte Carlo Sampler for Multivariate Generalised Linear Mixed Models with special 
emphasis on correlated random effects arising from pedigrees and phylogenies (Hadfield 2010). 
Please read the course notes: vignette("CourseNotes", "MCMCglmm") or the 
overviewvignette("Overview", "MCMCglmm") 

Usage 
MCMCglmm(fixed, random=NULL, rcov=~units, family="gaussian", mev=NULL,  
    data,start=NULL, prior=NULL, tune=NULL, pedigree=NULL, nodes="ALL", 
    scale=TRUE, nitt=13000, thin=10, burnin=3000, pr=FALSE, 
    pl=FALSE, verbose=TRUE, DIC=TRUE, singular.ok=FALSE, saveX=TRUE, 
    saveZ=TRUE, saveXL=TRUE, slice=FALSE, ginverse=NULL) 
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Arguments 
fixed formula for the fixed effects, multiple responses are passed as a matrix using 

cbind 
random formula for the random effects. Multiple random terms can be passed using 

the +operator, and in the most general case each random term has the form 
variance.function(formula):random.term. Currently, the only 
variance.functions available are idv, idh, us and cor. idv fits a constant 
variance across all components in formula, and cor fixes the variances to 1. 
Bothidh and us fit different variances across each component in formula, 
but us will also fit the covariances. The formula can contain both factors and 
numeric terms (i.e. random regression) although it should be noted that the 
intercept term is suppressed. The (co)variances are the (co)variances of 
the random.term effects. For simple random effects 
the variance.function(formula) can be omitted and the model syntax has 
the simpler form ~random1+random2+.... There are two reserved 
variables: units which index rows of the response variable and trait which 
index columns of the response variable 

rcov formula for residual covariance structure. This has to be set up so that each 
data point is associated with a unique residual. For example a multi-response 
model might have the R-structure defined by ~us(trait):units 

family optional character vector of trait distributions. 33



Currently, "gaussian", "poisson","categorical", "multinomial", "ord
inal", "exponential","geometric", "cengaussian", "cenpoisson", "c
enexponential","zipoisson", "zapoisson", "ztpoisson", "hupoisson
" and"zibinomial" are supported, where the prefix "cen" means censored, 
the prefix"zi" means zero inflated, the prefix "za" means zero altered, the 
prefix "zt"means zero truncated and the prefix "hu" means hurdle. 
If NULL, data needs to contain a family column. 

mev optional vector of measurement error variances for each data point for random 
effect meta-analysis. 

data data.frame

start optional list having 4 possible elements: R (R-structure) G (G-structure) and liab 
(latent variables or liabilities) should contain the starting values where G itself is 
also a list with as many elements as random effect components. The fourth 
element QUASI should be logical: if TRUE starting latent variables are obtained 
heuristically, if FALSE then they are sampled from a Z-distribution 

prior optional list of prior specifications having 3 possible elements: R (R-
structure) G (G-structure) and B (fixed effects). B is a list containing the expected 
value (mu) and a (co)variance matrix (V) representing the strength of belief: the 
defaults are B$mu=0 and B$V=I*1e+10, where where I is an identity matrix of 
appropriate dimension. The priors for the variance structures (R and G) are lists 
with the expected (co)variances (V) and degree of belief parameter (nu) for the 
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inverse-Wishart, and also the mean vector (alpha.mu) and covariance matrix 
(alpha.V) for the redundant working parameters. The defaults 
are nu=0, V=1, alpha.mu=0, and alpha.V=0. When alpha.V is non-zero, 
parameter expanded algorithms are used. 

tune optional (co)variance matrix defining the proposal distribution for the latent 
variables. If NULL an adaptive algorithm is used which ceases to adapt once the 
burn-in phase has finished. 

nitt number of MCMC iterations 
thin thinning interval 
burnin burnin 
pr logical: should the posterior distribution of random effects be saved? 
pl logical: should the posterior distribution of latent variables be saved? 
verbose logical: if TRUE MH diagnostics are printed to screen 
DIC logical: if TRUE deviance and deviance information criterion are calculated 
singular.ok logical: if FALSE linear dependencies in the fixed effects are removed. 

if TRUE they are left in and estimated, although all information comes from the 
prior 

saveX logical: save fixed effect design matrix 
saveZ logical: save random effect design matrix 
saveXL logical: save structural parameter design matrix 35



slice logical: should slice sampling be used? Only applicable for binary trials with 
independent residuals 

ginverse a list of sparse inverse matrices (solve(A)) that are proportional to the covariance 
structure of the random effects. The names of the matrices should correspond to 
columns in data that are associated with the random term. All levels of the 
random term should appear as rownames for the matrices. 

Value 
Sol Posterior Distribution of MME solutions, including fixed effects 
VCV Posterior Distribution of (co)variance matrices 
CP Posterior Distribution of cut-points from an ordinal model 
Liab Posterior Distribution of latent variables 
Fixed list: fixed formula and number of fixed effects 
Random list: random formula, dimensions of each covariance matrix, number of levels per 

covariance matrix, and term in random formula to which each covariance belongs 
Residual list: residual formula, dimensions of each covariance matrix, number of levels per 

covariance matrix, and term in residual formula to which each covariance belongs 
Deviance deviance -2*log(p(y|...)) 
DIC deviance information criterion 
X sparse fixed effect design matrix 
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Z sparse random effect design matrix 
XL sparse structural parameter design matrix 
error.term residual term for each datum 
family distribution of each datum 
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Non‐mixed	example:	Overdispersed	Poisson	with	a	‘real’	model	
 

 

 
> library(MCMCglmm) 
> ?Traffic 
> head(Traffic) 
  year day limit  y 
1 1961   1    no  9 
2 1961   2    no 11 
3 1961   3    no  9 
4 1961   4    no 20 
5 1961   5    no 31 
6 1961   6    no 26 
> xqplot(Traffic) 
> tab( Traffic, ~ year + limit) 
       limit 
year     no yes Total 
  1961   71  21    92 
  1962   44  48    92 
  Total 115  69   184 
> histogram( ~ y| 
+     paste(year)*paste('limit =',limit), 
+     Traffic) 
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Dataset: 
 
Number of accidents per day in Sweden according to 
 Year 
 Limit: whether a speed limit was enforced on that day 
 Day of the year (only about 80 days per year) 

 
It is natural to model y = number of road accidents in a day as 
a Poisson random variable.  The Poisson would be the correct 
distribution of the number of accidents if  
1) On a given day, everyone has the same probability of an 

accident 
2) Accidents are independent. 
3) There is no unexplained heterogeneity: All days that are 

predicted to have the same number of expected accidents do, 
in fact, have the same number of expected accidents. 
 

Any violation will tend to make you model fishy -- an 
‘overdispersed’ Poisson. 
 
 
> Traffic$yr <- factor(Traffic$year) 
> fit <- glm( y ~ yr + limit + day, Traffic,  
+   family = 'poisson') 
> summary(fit) 
 
Call: 
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glm(formula = y ~ yr + limit + day, family = "poisson", 
      data = Traffic) 
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)  3.0467406  0.0372985  81.685  < 2e-16 *** 
yr1962      -0.0605503  0.0334364  -1.811   0.0702 .   
limityes    -0.1749337  0.0355784  -4.917 8.79e-07 *** 
day          0.0024164  0.0005964   4.052 5.09e-05 *** 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 625.25  on 183  degrees of freedom 
Residual deviance: 569.25  on 180  degrees of freedom 
AIC: 1467.2 
 
Fitting an overdispersed Poisson: 
 
> fit.q <- glm( y ~ yr + limit + day, Traffic,  
+   family = 'quasipoisson') 
 
> summary(fit.q) 
 
Call: 
glm(formula = y ~ yr + limit + day, family = "quasipoisson",  
    data = Traffic) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.046741   0.067843  44.909  < 2e-16 *** 
yr1962      -0.060550   0.060818  -0.996  0.32078     40



limityes    -0.174934   0.064714  -2.703  0.00753 **  
day          0.002416   0.001085   2.227  0.02716 *   
 
(Dispersion parameter for quasipoisson family taken to be 
3.308492) 
 
    Null deviance: 625.25  on 183  degrees of freedom 
Residual deviance: 569.25  on 180  degrees of freedom 
AIC: NA 

 

Using	MCMCglmm	
 

~ ( exp(y Poisson X           
2~ (0, )N I    

Epsilon is NOT in the glm “poisson” model. Nor in the glm “quasipoisson” model. 
It allows for overdispersion due to unmodeled heterogeneity. It fits a Poisson model without 
assuming no overdispersion but fitting a real model, in contrast with the use of estimating 
equations with quasipoisson. 
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> fitmc <- MCMCglmm( y ~ yr + limit + day,  
+                    data = Traffic,  
+                    family = 'poisson') 
 
                      MCMC iteration = 0 
 
  Acceptance ratio for latent scores = 0.000239 
 
                      MCMC iteration = 1000 

. 

. 
  Acceptance ratio for latent scores = 0.389538 
 
                      MCMC iteration = 13000 
 
  Acceptance ratio for latent scores = 0.388163 
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>   summary(fitmc)  # much more similar to quasipoisson than to poisson 
 
 Iterations = 3001:12991 
 Thinning interval  = 10 
 Sample size  = 1000  
 
 DIC: 1197.334  
 
 R-structure:  ~units 
 
      post.mean l-95% CI u-95% CI eff.samp 
units    0.1008   0.0704   0.1359    816.6 
 
 Location effects: y ~ yr + limit + day  
 
             post.mean   l-95% CI   u-95% CI eff.samp  pMCMC     
(Intercept)  2.9923658  2.8533073  3.1146312   1000.0 <0.001 *** 
yr1962      -0.0677055 -0.1909837  0.0391579   1000.0  0.252     
limityes    -0.1720560 -0.2787613 -0.0400451   1000.0  0.004 **  
day          0.0025657  0.0003546  0.0046178    880.5  0.030 *   
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>   plot(fitmc, auto.layout = FALSE) 
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Eyeball training: 
 
 
 
 
 
>   Z <- matrix(rnorm(2000),ncol=2) 
>   head(Z) 
           [,1]       [,2] 
[1,]  0.2087386 -0.3803337 
[2,] -2.6537110 -0.3144766 
[3,] -1.0373284 -0.2916398 
[4,]  0.2288955 -1.1388010 
[5,] -1.3748541 -1.1512625 
[6,] -0.7583837 -0.2082907 
>   plot( mcmc(Z)) 
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Increasing the number of iterations to raise effective sample > 1000: 
 
>   fitmc.u <- MCMCglmm( y ~ yr + limit + day,  
+                        data = Traffic,  
+                        family = 'poisson', 
+                        nitt = 24000) 
 
                      MCMC iteration = 0 
 
  Acceptance ratio for latent scores = 0.000255 

. 

. 

. 
                      MCMC iteration = 24000 
 
  Acceptance ratio for latent scores = 0.378212 
>   summary(fitmc.u) 
 
 Iterations = 3001:23991 
 Thinning interval  = 10 
 Sample size  = 2100  
 
 DIC: 1195.948  
 
 R-structure:  ~units 
 
      post.mean l-95% CI u-95% CI eff.samp 
units    0.1003  0.07189   0.1314     1511 
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 Location effects: y ~ yr + limit + day  
 
             post.mean   l-95% CI   u-95% CI eff.samp  pMCMC     
(Intercept)  2.9901543  2.8535135  3.1127372     1888 <5e-04 *** 
yr1962      -0.0655085 -0.1796330  0.0537198     1934 0.2724     
limityes    -0.1695618 -0.2992701 -0.0470397     1832 0.0114 *   
day          0.0026028  0.0003648  0.0046528     1882 0.0133 *   

 

MCMCglmm	with	a	mixed	model	
 
>   head(ds) 
  id ha time dos hatype female age airq medication treat 
1  1  1  -11 753   Aura      1  30    9 Continuing FALSE 
2  1  1  -10 754   Aura      1  30    7 Continuing FALSE 
3  1  1   -9 755   Aura      1  30   10 Continuing FALSE 
4  1  1   -8 756   Aura      1  30   13 Continuing FALSE 
5  1  1   -7 757   Aura      1  30   18 Continuing FALSE 
6  1  1   -6 758   Aura      1  30   19 Continuing FALSE 
>   ds $ treat <- 1*ds$treat 
>   ds $ time.eff <- with(ds, exp(-time/13)*treat) 
>   prior <- list( R = list(V=.05,nu=0,fix=1), 
+                  G = list(G1=list(V=diag(3), nu = .02))) 
>   ds $ id <- factor( ds $ id ) 
>   ds $ treat <- 1*ds$treat 
>   ds $ time.eff <- with(ds, exp(-time/13)*treat) 
>    47



>   prior <- list( R = list(V=.05,nu=0,fix=1), 
+                  G = list(G1=list(V=diag(3), nu = .02))) 
>    
>   ds $ id <- factor( ds $ id ) 
>    
>   fit4mc<- MCMCglmm ( ha ~ (treat + I( exp( - time / 13) * treat)) * medication , 
+                   data = ds, 
+                   family = "categorical", 
+                   random = ~ us( 1 + treat + time.eff):id, 
+                   prior = prior) 
 
                      MCMC iteration = 0 
 
  Acceptance ratio for latent scores = 0.000400 
 
                      MCMC iteration = 1000 
 
  Acceptance ratio for latent scores = 0.428833 
 
                    . 

. 

. 
                      MCMC iteration = 13000 
 
  Acceptance ratio for latent scores = 0.457138 
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> summary(fit4mc) 
 
 Iterations = 3001:12991 
 Thinning interval  = 10 
 Sample size  = 1000  
 DIC: 4155.28  
 G-structure:  ~us(1 + treat + time.eff):id 
 
                           post.mean l-95% CI u-95% CI eff.samp 
(Intercept):(Intercept).id   1.64437  0.79660  2.53289   31.365 
treat:(Intercept).id         0.08521 -0.84724  0.83576    8.879 
time.eff:(Intercept).id      0.18009 -0.57144  0.95664   14.401 
(Intercept):treat.id         0.08521 -0.84724  0.83576    8.879 
treat:treat.id               1.78350  0.56580  3.25219   11.060 
time.eff:treat.id           -1.56453 -2.74539 -0.06871    8.787 
(Intercept):time.eff.id      0.18009 -0.57144  0.95664   14.401 
treat:time.eff.id           -1.56453 -2.74539 -0.06871    8.787 
time.eff:time.eff.id         2.25575  0.03524  5.30354    3.345 
 
 R-structure:  ~units 
 
      post.mean l-95% CI u-95% CI eff.samp 
units      0.05     0.05     0.05        0 
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 Location effects: ha ~ (treat + I(exp(-time/13) * treat)) * medication  
 
                                              post.mean l-95% CI u-95% CI eff.samp  pMCMC     
(Intercept)                                     1.61481  0.87917  2.44988    38.54 <0.001 *** 
treat                                          -0.63092 -1.52981  0.08006    45.71  0.130     
I(exp(-time/13) * treat)                        2.80017  1.61635  3.73388    15.80 <0.001 *** 
medicationContinuing                           -0.80660 -1.74130  0.12437    34.43  0.094 .   
medicationNone                                 -1.19420 -2.28772 -0.22304    79.32  0.016 *   
treat:medicationContinuing                      0.35670 -0.60453  1.36830    39.08  0.476     
treat:medicationNone                           -0.95212 -2.05963  0.14111    66.04  0.102     
I(exp(-time/13) * treat):medicationContinuing  -1.43442 -2.67162  0.12373     7.48  0.090 .   
I(exp(-time/13) * treat):medicationNone        -1.14386 -2.59092  0.25944    25.79  0.120   
 
>   wald(fit4mc, 'medication') 
           numDF denDF F.value p.value 
medication     6   Inf 5.48184   1e-05 
                                                
Coefficients                                     Estimate Std.Error  DF   t-value p-value 
  medicationContinuing                          -0.806599  0.485507 Inf -1.661353 0.09664 
  medicationNone                                -1.194200  0.530661 Inf -2.250399 0.02442 
  treat:medicationContinuing                     0.356696  0.505269 Inf  0.705952 0.48022 
  treat:medicationNone                          -0.952119  0.582397 Inf -1.634828 0.10209 
  I(exp(-time/13) * treat):medicationContinuing -1.434419  0.743038 Inf -1.930479 0.05355 
  I(exp(-time/13) * treat):medicationNone       -1.143860  0.735718 Inf -1.554754 0.12000 
                                                
Coefficients                                    Lower 0.95 Upper 0.95 
  medicationContinuing                           -1.758176   0.144978 
  medicationNone                                 -2.234277  -0.154123 
  treat:medicationContinuing                     -0.633613   1.347005 
  treat:medicationNone                           -2.093596   0.189358 
  I(exp(-time/13) * treat):medicationContinuing  -2.890747   0.021908 
  I(exp(-time/13) * treat):medicationNone        -2.585839   0.298120 
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#  Note: very small effective sample sizes 
> plot(fitmc) 
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4000 6000 8000 10000 12000

-3
-1

Iterations

Trace of medicationNone

-3 -2 -1 0 1

0.
0

0.
4

N = 1000   Bandwidth = 0.1413

Density of medicationNone

4000 6000 8000 10000 12000

-1
.0

0.
5

Iterations

Trace of treat:medicationContinuing

-1 0 1 2

0.
0

0.
4

0.
8

N = 1000   Bandwidth = 0.1329

Density of treat:medicationContinuing

4000 6000 8000 10000 12000

-3
-1

Iterations

Trace of treat:medicationNone

-3 -2 -1 0 1
0.

0
0.

3
0.

6

N = 1000   Bandwidth = 0.1551

Density of treat:medicationNone

4000 6000 8000 10000 12000

-3
-1

Iterations

Trace of I(exp(-time/13) * treat):medicationContinuing

-4 -3 -2 -1 0 1

0.
0

0.
3

N = 1000   Bandwidth = 0.1978

Density of I(exp(-time/13) * treat):medicationContinuing

52



 
  

 
  

4000 6000 8000 10000 12000

-3
-1

1

Iterations

Trace of I(exp(-time/13) * treat):medicationNone

-4 -3 -2 -1 0 1 2

0.
0

0.
3

N = 1000   Bandwidth = 0.192

Density of I(exp(-time/13) * treat):medicationNone

4000 6000 8000 10000 12000

0.
5

1.
5

2.
5

3.
5

Iterations

Trace of (Intercept):(Intercept).id

0 1 2 3

0.
0

0.
4

0.
8

N = 1000   Bandwidth = 0.1177

Density of (Intercept):(Intercept).id

4000 6000 8000 10000 12000

-1
.5

-0
.5

0.
5

Iterations

Trace of treat:(Intercept).id

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

N = 1000   Bandwidth = 0.1096

Density of treat:(Intercept).id

53



  

4000 6000 8000 10000 12000

-1
.0

0.
0

1.
0

Iterations

Trace of (Intercept):time.eff.id

-1.0 -0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

N = 1000   Bandwidth = 0.1061

Density of (Intercept):time.eff.id

4000 6000 8000 10000 12000

-4
-3

-2
-1

0

Iterations

Trace of treat:time.eff.id

-4 -3 -2 -1 0

0.
0

0.
2

0.
4

0.
6

N = 1000   Bandwidth = 0.1817

Density of treat:time.eff.id

4000 6000 8000 10000 12000

0
2

4
6

8

Iterations

Trace of time.eff:time.eff.id

0 2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

N = 1000   Bandwidth = 0.4308

Density of time.eff:time.eff.id

54



 
Note: This MCMC is far from having converged. We would like an effective sample size of 
at least 1,000. The last trace would be a sign that the MCMC got stuck, except that this 
parameter was fixed at 0.05. 
 
Wald test of the ‘medication’ effect: not to be taken too seriously: 
 
>   wald(fit4mc, 'medication') 
           numDF denDF F.value p.value 
medication     6   Inf 5.48184   1e-05 
                                                
Coefficients                                     Estimate Std.Error  DF   t-value p-value 
  medicationContinuing                          -0.806599  0.485507 Inf -1.661353 0.09664 
  medicationNone                                -1.194200  0.530661 Inf -2.250399 0.02442 
  treat:medicationContinuing                     0.356696  0.505269 Inf  0.705952 0.48022 
  treat:medicationNone                          -0.952119  0.582397 Inf -1.634828 0.10209 
  I(exp(-time/13) * treat):medicationContinuing -1.434419  0.743038 Inf -1.930479 0.05355 
  I(exp(-time/13) * treat):medicationNone       -1.143860  0.735718 Inf -1.554754 0.12000 
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Why does R: 2  =  0.05 work? 

With no 2  if p̂  for a points gets close to 1 or 0, the variance for that point  

becomes close to 0 which makes the model stick to the point.  

Keeping a minimal variance for each point prevents the model from sticking to them. 

  

What to do next: 

1) Consider centering random effects if their variance matrix approaches singularity. 
2) Increase nitt, burnin and thin by a factor, perhaps 100, so  

So nitt = 130000, burnin = 30000, thin = 1000 
-- Might take all night 

3) Explore the lab on GLMMs. 
4) Read Jarrod Hadfields’s MCMCglmm Course Notes (2012)   
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