Arnqvist, Göran. 2020a.
“Mixed Models Offer No Freedom from Degrees of Freedom.” Trends in Ecology & Evolution 35 (4): 329–35.
https://doi.org/10.1016/j.tree.2019.12.004.
———. 2020b.
“Mixed Models Offer No Freedom from Degrees of Freedom.” Trends in Ecology & Evolution 35 (4): 329–35.
https://doi.org/10.1016/j.tree.2019.12.004.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015.
“Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software 67 (1).
https://doi.org/10.18637/jss.v067.i01.
Best, Nicky, and Alexina Mason. 2012. “Bayesian Approaches to Handling Missing Data.”
Blackwell, Matthew. 2013. “Observational Studies and Confounding,” 6.
Buuren, Stef van, and Karin Groothuis-Oudshoorn. 2011.
“Mice : Multivariate Imputation by Chained Equations in R.” Journal of Statistical Software 45 (3).
https://doi.org/10.18637/jss.v045.i03.
Buuren, Stef Van, and Karin Groothuis-Oudshoorn. 2011.
“Mice : Multivariate Imputation by Chained Equations in R.” Journal of Statistical Software 45 (3).
https://doi.org/10.18637/jss.v045.i03.
Byeon, Sangmin, and Woojoo Lee. 2023.
“Directed Acyclic Graphs for Clinical Research: A Tutorial.” Journal of Minimally Invasive Surgery 26 (3): 97–107.
https://doi.org/10.7602/jmis.2023.26.3.97.
Chambers, J., T. Hastie, and D. Pregibon. 1990.
“Statistical Models in S.” In
Compstat, edited by Konstantin Momirović and Vesna Mildner, 317–21. Heidelberg: Physica-Verlag HD.
https://doi.org/10.1007/978-3-642-50096-1_48.
Christensen, Rune Haubo B. n.d. “A Tutorial on Fitting Cumulative Link Mixed Models with Clmm2 from the Ordinal Package,” 10.
Cox, D. R., and N. Wermuth. 1999. “Derived Variables for Longitudinal Studies.” Proceedings of the National Academy of Sciences 96 (22): 12273.
Curran, Patrick J., and Daniel J. Bauer. 2011.
“The Disaggregation of Within-Person and Between-Person Effects in Longitudinal Models of Change.” Annual Review of Psychology 62 (1): 583–619.
https://doi.org/10.1146/annurev.psych.093008.100356.
Curran, Patrick J., Khawla Obeidat, and Diane Losardo. 2010.
“Twelve Frequently Asked Questions About Growth Curve Modeling.” Journal of Cognition and Development 11 (2): 121–36.
https://doi.org/10.1080/15248371003699969.
Damelang, Andreas, and Sabine Ebensperger. 2020.
“Gender Composition of Occupations and Occupational Characteristics: Explaining Their True Relationship by Using Longitudinal Data.” Social Science Research 86 (February): 102394.
https://doi.org/10.1016/j.ssresearch.2019.102394.
Dang, Kevin, Megan A. Kirk, Georges Monette, Joel Katz, and Paul Ritvo. 2021.
“Meaning in Life and Vagally-Mediated Heart Rate Variability: Evidence of a Quadratic Relationship at Baseline and Vagal Reactivity Differences.” International Journal of Psychophysiology, March.
https://doi.org/10.1016/j.ijpsycho.2021.03.001.
Daniels, Michael J., and Joseph W. Hogan. 2008. Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman and Hall/CRC.
Daniels, Michael J., and Yan D. Zhao. 2003.
“Modelling the Random Effects Covariance Matrix in Longitudinal Data.” Statistics in Medicine 22 (10): 1631–47.
https://doi.org/10.1002/sim.1470.
Dean, C. B., and Jason D. Nielsen. 2007a.
“Generalized Linear Mixed Models: A Review and Some Extensions.” Lifetime Data Analysis 13 (4): 497–512.
https://doi.org/10.1007/s10985-007-9065-x.
———. 2007b.
“Generalized Linear Mixed Models: A Review and Some Extensions.” Lifetime Data Analysis 13 (4): 497–512.
https://doi.org/10.1007/s10985-007-9065-x.
Diggle, Peter J., and David Taylor-Robinson. 2019.
“Longitudinal Data Analysis.” In
Handbook of Epidemiology, edited by Wolfgang Ahrens and Iris Pigeot, 1–34. New York, NY: Springer.
https://doi.org/10.1007/978-1-4614-6625-3_75-1.
Dong, Yiran, and Chao-Ying Joanne Peng. 2013.
“Principled Missing Data Methods for Researchers.” SpringerPlus 2 (1): 222.
https://doi.org/10.1186/2193-1801-2-222.
Fitzmaurice, Garrett, and Geert Molenberghs. 2008.
“Advances in Longitudinal Data Analysis: An Historical Perspective.” In
Longitudinal Data Analysis, edited by Geert Verbeke, Marie Davidian, Garrett Fitzmaurice, and Geert Molenberghs, 20085746:3–27.
Chapman and Hall/CRC.
https://doi.org/10.1201/9781420011579.pt1.
Fox, John. 2015. Applied Regression Analysis and Generalized Linear Models. Sage Publications.
———. 2019a. “Bayesian Estimation of Regression Models.” In, 31.
———. 2019b. “Bayesian Estimation of Regression Models.” In, 31.
Fox, John, and Sanford Weisberg. 2019a.
An R Companion to Applied Regression. 3rd ed. Thousand Oaks CA: Sage.
https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
———. 2019b. “Nonlinear Regression, Nonlinear Least Squares, and Nonlinear Mixed Models in R.” Population 150: 200.
Fox, John, Sanford Weisberg, Brad Price, Michael Friendly, Jangman Hong, Robert Andersen, David Firth, Steve Taylor, and R Core Team. 2022.
“Effects: Effect Displays for Linear, Generalized Linear, and Other Models.” https://cran.r-project.org/web/packages/effects/index.html.
Friendly, Michael, Georges Monette, and John Fox. 2013.
“Elliptical Insights: Understanding Statistical Methods Through Elliptical Geometry.” Statistical Science 28 (1): 1–39.
https://doi.org/10.1214/12-STS402.
Fu, Liya, You-Gan Wang, and Jinran Wu. 2024a.
“Chapter 6 - Recent Advances in Longitudinal Data Analysis.” In
Handbook of Statistics, edited by Donald E. K. Martin, Arni S. R. Srinivasa Rao, and C. R. Rao, 50:173–221. Modeling and
Analysis of
Longitudinal Data. Elsevier.
https://doi.org/10.1016/bs.host.2023.10.007.
———. 2024b.
Recent Advances in Longitudinal Data Analysis. Vol. 50. Elsevier.
https://doi.org/10.1016/bs.host.2023.10.007.
Gelman, Andrew. 2004.
“Treatment Effects in Before-After Data.” In
Wiley Series in Probability and Statistics, edited by Andrew Gelman and Xiao-Li Meng, 1st ed., 195–202. Wiley.
https://doi.org/10.1002/0470090456.ch18.
———. 2007.
“Rejoinder: Struggles with Survey Weighting and Regression Modeling.” Statistical Science 22 (2): 184–88.
http://www.jstor.org/stable/27645819.
———. 2024a.
“Hopes and Limitations of Reproducible Statistics and Machine Learning.” Harvard Data Science Review 6 (1).
https://doi.org/10.1162/99608f92.040d5523.
———. 2024b.
“A Chain as Strong as Its Strongest Link? Understanding the Causes and Consequences of Biases Arising from Selective Analysis and Reporting of Research Results.” Journal of Research on Educational Effectiveness 17 (3): 459–61.
https://doi.org/10.1080/19345747.2023.2219673.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. Chapman and Hall/CRC.
Gelman, Andrew, John B. Clarlin., Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2025.
“Bayesian Data Analysis, 3rd Ed. Home Page.” Bayesian Data Analysis, 3rd Ed. Home Page.
https://sites.stat.columbia.edu/gelman/book/.
Gelman, Andrew, Jennifer Hill, and Masanao Yajima. 2012.
“Why We (Usually) Don’t Have to Worry About Multiple Comparisons.” Journal of Research on Educational Effectiveness 5 (2): 189–211.
https://doi.org/10.1080/19345747.2011.618213.
Gelman, Andrew, and Iain Pardoe. 2006.
“Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models.” Technometrics 48 (2): 241–51.
https://doi.org/10.1198/004017005000000517.
Gigerenzer, Gerd, Wolfgang Gaissmaier, Elke Kurz-Milcke, Lisa M. Schwartz, and Steven Woloshin. 2007.
“Helping Doctors and Patients Make Sense of Health Statistics.” Psychological Science in the Public Interest 8 (2): 53–96.
https://doi.org/10.1111/j.1539-6053.2008.00033.x.
Gillespie, Colin, and Robin Lovelace. n.d.a.
Efficient R Programming. Accessed April 22, 2025.
https://csgillespie.github.io/efficientR/.
———. n.d.b.
Efficient R Programming. Accessed December 26, 2019.
https://csgillespie.github.io/efficientR/.
Hartig, Florian. 2022.
DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. Manual.
https://CRAN.R-project.org/package=DHARMa.
Hernán, Miguel A, and James M Robins. 2020.
Causal Inference: What If. Boca Raton: Chapman & Hall/CRC: Chapman & Hall/CRC.
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/.
Imbens, Guido W. n.d. “Causal Inference in the Social Sciences.”
Ioannidis, John P A. 2005.
“Why Most Published Research Findings Are False.” PLoS Medicine 2 (8): 6.
https://journals.plos.org/plosmedicine/article/file?id=10.1371%2Fjournal.pmed.0020124&type=printable.
Ioannidis, John P. A. 2019.
“What Have We (Not) Learnt from Millions of Scientific Papers with P Values?” The American Statistician 73 (sup1): 20–25.
https://doi.org/10.1080/00031305.2018.1447512.
Jahangiri, Mina, Anoshirvan Kazemnejad, Keith S. Goldfeld, Maryam S. Daneshpour, Shayan Mostafaei, Davood Khalili, Mohammad Reza Moghadas, and Mahdi Akbarzadeh. 2023.
“A Wide Range of Missing Imputation Approaches in Longitudinal Data: A Simulation Study and Real Data Analysis.” BMC Medical Research Methodology 23 (1): 161.
https://doi.org/10.1186/s12874-023-01968-8.
Johnson, Paul, and John Gruber. n.d. “R Markdown Basics,” 19.
Kass, Robert E., Brian S. Caffo, Marie Davidian, Xiao-Li Meng, Bin Yu, and Nancy Reid. 2016a.
“Ten Simple Rules for Effective Statistical Practice.” PLOS Computational Biology 12 (6): e1004961.
https://doi.org/10.1371/journal.pcbi.1004961.
———. 2016b.
“Ten Simple Rules for Effective Statistical Practice.” Edited by Fran Lewitter.
PLOS Computational Biology 12 (6): e1004961.
https://doi.org/10.1371/journal.pcbi.1004961.
Kim, Yongnam. 2019.
“The Causal Structure of Suppressor Variables.” Journal of Educational and Behavioral Statistics 44 (4): 367–89.
https://doi.org/10.3102/1076998619825679.
Kuh, Swen, Lauren Kennedy, Qixuan Chen, and Andrew Gelman. 2022.
“Using Leave-One-Out Cross-Validation (LOO) in a Multilevel Regression and Poststratification (MRP) Workflow: A Cautionary Tale.” arXiv.
https://doi.org/10.48550/arXiv.2209.01773.
M. Gad, Ahmed, and Rasha B. El Kholy. 2012.
“Generalized Linear Mixed Models for Longitudinal Data.” International Journal of Probability and Statistics 1 (3): 41–47.
https://doi.org/10.5923/j.ijps.20120103.03.
Matuschek, Hannes, Reinhold Kliegl, Shravan Vasishth, Harald Baayen, and Douglas Bates. 2017.
“Balancing Type I Error and Power in Linear Mixed Models.” Journal of Memory and Language 94 (June): 305–15.
https://doi.org/10.1016/j.jml.2017.01.001.
McElreath, Richard. 2018.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 1st ed.
Chapman and Hall/CRC.
https://doi.org/10.1201/9781315372495.
McGillycuddy, Maeve, Gordana Popovic, Benjamin M. Bolker, and David I. Warton. 2025.
“Parsimoniously Fitting Large Multivariate Random Effects in glmmTMB.” Journal of Statistical Software 112 (April): 1–19.
https://doi.org/10.18637/jss.v112.i01.
Monette, Georges. 2025.
“MATH 6642: Applied Longitudinal Data Analysis.” MATH 6642: Applied Longitudinal Data Analysis.
http://blackwell.math.yorku.ca/MATH6642/.
Morgan, Stephen L., ed. 2013.
Handbook of Causal Analysis for Social Research. Handbooks of
Sociology and
Social Research. Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-007-6094-3.
Oliver, John. 2016.
“Last Week Tonight with John Oliver: Scientific Studies.” HBO.
https://www.youtube.com/watch?v=0Rnq1NpHdmw.
Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect. Basic Books.
Peugh, James L., Sarah J. Beal, Meghan E. McGrady, Michael D. Toland, and Constance Mara. 2021.
“Analyzing Discontinuities in Longitudinal Count Data: A Multilevel Generalized Linear Mixed Model.” Psychological Methods 26 (4): 375–97.
https://doi.org/10.1037/met0000347.
Pinheiro, José C., and Douglas M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. Statistics and Computing. New York: Springer.
“R Interface to CmdStan.” n.d. Accessed March 25, 2025.
https://mc-stan.org/cmdstanr/.
Raudenbush, Stephen W., and Daniel Schwartz. 2020.
“Randomized Experiments in Education, with Implications for Multilevel Causal Inference.” Annual Review of Statistics and Its Application 7 (1): 177–208.
https://doi.org/10.1146/annurev-statistics-031219-041205.
Rietbergen, Charlotte, Thomas P. A. Debray, Irene Klugkist, Kristel J. M. Janssen, and Karel G. M. Moons. 2017.
“Reporting of Bayesian Analysis in Epidemiologic Research Should Become More Transparent.” Journal of Clinical Epidemiology 86 (June): 51–58.e2.
https://doi.org/10.1016/j.jclinepi.2017.04.008.
Rosa, G. J. M., D. Gianola, and C. R. Padovani. 2004.
“Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions Using MCMC.” Journal of Applied Statistics 31 (7): 855–73.
https://doi.org/10.1080/0266476042000214538.
Rosset, Saharon, and Ryan J. Tibshirani. 2017.
“From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation.” https://doi.org/10.48550/arxiv.1704.08160.
———. 2020a.
“From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation: Rejoinder.” Journal of the American Statistical Association 115 (529): 161–62.
https://doi.org/10.1080/01621459.2020.1727236.
———. 2020b.
“From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation: Rejoinder.” Journal of the American Statistical Association 115 (529): 161–62.
https://doi.org/10.1080/01621459.2020.1727236.
———. 2022.
“From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation: Correction.” Journal of the American Statistical Association 117 (537): 529–29.
https://doi.org/10.1080/01621459.2021.2016420.
Schervish, Mark J. 1996. “P Values: What They Are and What They Are Not.” The American Statistician 30 (3): 203–6.
Sheetal, Abhishek, Zhou Jiang, and Lee Di Milia. 2023.
“Using Machine Learning to Analyze Longitudinal Data: A Tutorial Guide and Best-Practice Recommendations for Social Science Researchers.” Applied Psychology 72 (3): 1339–64.
https://doi.org/10.1111/apps.12435.
Shen, Xiaotong, and Hsin-Cheng Huang. 2020.
“Discussion of "From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation".” Journal of the American Statistical Association 115 (529): 152–56.
https://doi.org/10.1080/01621459.2018.1543597.
Singer, Judith D., and John B. Willett. 2003. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, USA.
Snijders, Tom A. B., and Roel J. Bosker. 2012. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling, Second Edition. Sage.
“Stan.” n.d.
Stan. Accessed April 22, 2025.
https://mc-stan.org/.
Stolwijk, A. M., H. Straatman, and G. A. Zielhuis. 1999.
“Studying Seasonality by Using Sine and Cosine Functions in Regression Analysis.” Journal of Epidemiology and Community Health (1979-) 53 (4): 235–38.
https://www.jstor.org/stable/25568956.
Stram, Daniel O., and Jae Won Lee. 1994.
“Variance Components Testing in the Longitudinal Mixed Effects Model.” Biometrics 50 (4): 1171.
https://doi.org/10.2307/2533455.
Štrumbelj, Erik, Alexandre Bouchard-Côté, Jukka Corander, Andrew Gelman, Håvard Rue, Lawrence Murray, Henri Pesonen, Martyn Plummer, and Aki Vehtari. 2024.
“Past, Present and Future of Software for Bayesian Inference.” Statistical Science 39 (1).
https://doi.org/10.1214/23-STS907.
Sung, Lillian, Jill Hayden, Mark L. Greenberg, Gideon Koren, Brian M. Feldman, and George A. Tomlinson. 2005.
“Seven Items Were Identified for Inclusion When Reporting a Bayesian Analysis of a Clinical Study.” Journal of Clinical Epidemiology 58 (3): 261–68.
https://doi.org/10.1016/j.jclinepi.2004.08.010.
Sutradhar, Brajendra C. 2003.
“An Overview on Regression Models for Discrete Longitudinal Responses.” Statistical Science 18 (3): 377–93.
https://doi.org/10.1214/ss/1076102426.
Szucs, Denes, and John P. A. Ioannidis. 2017.
“When Null Hypothesis Significance Testing Is Unsuitable for Research: A Reassessment.” Frontiers in Human Neuroscience 11.
https://www.frontiersin.org/articles/10.3389/fnhum.2017.00390.
Tan, Xianming, Mariya P. Shiyko, Runze Li, Yuelin Li, and Lisa Dierker. 2012.
“A Time-Varying Effect Model for Intensive Longitudinal Data.” Psychological Methods 17 (1): 61–77.
https://doi.org/10.1037/a0025814.
Taylor, Jonathan, and Robert J. Tibshirani. 2015a.
“Statistical Learning and Selective Inference.” Proceedings of the National Academy of Sciences 112 (25): 7629–34.
https://doi.org/10.1073/pnas.1507583112.
———. 2015b.
“Statistical Learning and Selective Inference.” Proceedings of the National Academy of Sciences 112 (25): 7629–34.
https://doi.org/10.1073/pnas.1507583112.
van Zwet, Erik, Andrew Gelman, Sander Greenland, Guido Imbens, Simon Schwab, and Steven N Goodman. n.d. “A New Look at p-Values for Randomized Clinical Trials.”
Vanderweele, Tyler J., Hong, Jones, and Joshua L. and Brown. 2013.
“Mediation and Spillover Effects in Group-Randomized Trials: A Case Study of the 4Rs Educational Intervention.” Journal of the American Statistical Association 108 (502): 469–82.
https://doi.org/10.1080/01621459.2013.779832.
Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. n.d. “Pareto Smoothed Importance Sampling.”
Wager, Stefan. 2020.
“Cross-Validation, Risk Estimation, and Model Selection: Comment on a Paper by Rosset and Tibshirani.” Journal of the American Statistical Association 115 (529): 157–60.
https://doi.org/10.1080/01621459.2020.1727235.
Wainer, Howard, and Lisa M. Brown. 2004.
“Two Statistical Paradoxes in the Interpretation of Group Differences: Illustrated with Medical School Admission and Licensing Data.” The American Statistician 58 (2): 117–23.
http://www.jstor.org/stable/27643519.
Wang, Wei. 2013.
“Identifiability of Linear Mixed Effects Models.” Electronic Journal of Statistics 7 (0): 244–63.
https://doi.org/10.1214/13-EJS770.
Wong, Pauline P., Georges Monette, and Neil I. Weiner. 2001.
“Mathematical Models of Cognitive Recovery.” Brain Injury 15 (6): 519–30.
https://doi.org/10.1080/02699050010005995.
Wu, Lang, Wei Liu, Grace Y. Yi, and Yangxin Huang. 2012.
“Analysis of Longitudinal and Survival Data: Joint Modeling, Inference Methods, and Issues.” Journal of Probability and Statistics 2012 (1): 640153.
https://doi.org/10.1155/2012/640153.
Yuan, Ying, and Roderick J. A. Little. 2009.
“Mixed-Effect Hybrid Models for Longitudinal Data with Nonignorable Dropout.” Biometrics 65 (2): 478–86.
http://www.jstor.org/stable/25502309.