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Multiple	Regression	vs	Simple	Regression	
 
 What is the difference between regression on one variable and on two variables? 
 How can we interpret regression coefficient? 
 
Example: 
 

Small artificial example showing the relationship between Coffee Consumption and Heart 
Damage 

 
 
 

 
  



 
Artificial data: Heart Damage vs Coffee Consumption 
 
 
Is coffee bad for you?  
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Fitting a simple regression in R: 
 
> fit.simple <-lm( Heart ~ Coffee, dd)
> summary(fit.simple) 
 
Coefficients: 

 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -9.3138     9.2055  -1.012    0.325     
Coffee        1.1082     0.1072  10.339 5.34e-09 *** 
--- 
Residual standard error: 16.48 on 18 degrees of freedom 
Multiple R-squared: 0.8559,     Adjusted R-squared: 0.8479  
F-statistic: 106.9 on 1 and 18 DF,  p-value: 5.337e-09  
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Coffee is terrible! 
 
Is coffee causing Heart Damage? 
 
Every unit increase in Coffee 
Consumption is associated with a 
1.1082 increase in Heart Damage. 
 
Occupations suggest the possibility that 
something else may be responsible! 
 
It could be anything but 
we've measured Stress and we can see 
what happens when we include Stress 
in our analysis. 
 
  



 
  
 
 
Think of data as balloons 
floating in space tied down by 
strings 

  



 
  
 
The data show a strong 
association between any pair of 
the 3 variables: Heart, Coffee 
and Stress 

  
  



  
 
 
Rotating the data shows the 
strong association between 
Heart and Stress 

  
 
  
  



  
 
Viewing the data from above shows
a strong association between  
Stress and Coffee 

  
  



How can we consider the relationship 
between Heart and BOTH Coffee and  
Stress. 
 
One way: a linear multiple regression model: 
 
Model: 
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Fitting a multiple linear regression in R: 
> fit.mult <- lm( Heart ~ 
     Coffee + Stress, dd) 
> summary( fit.mult ) 
  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -7.7943     5.7927  -1.346    0.196     
Coffee       -0.4091     0.2918  -1.402    0.179     
Stress        1.1993     0.2244   5.345 5.36e-05 *** 
 
 
 



 
 
 

Fit:  




Heart  7.7943 0.4091 Coffee 
+ 1.1993 Stress

Heart  Heart +  
( ) 10.36

e
SD e

   





 
 

 
Coffee is good for you!?! 
 
But using the same data, our  
previous  analysis suggested  
coffee was bad 
for you! 
 
Statistics !#@&!!  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -7.7943     5.7927  -1.346    0.196     
Coffee       -0.4091     0.2918  -1.402    0.179     
Stress        1.1993     0.2244   5.345 5.36e-05 *** 
Residual standard error: 10.36 on 17 degrees of freedom 
Multiple R-squared: 0.9462,     Adjusted R-squared: 0.9399  
F-statistic: 149.6 on 2 and 17 DF,  p-value: 1.620e-11 



  
 

The negative slope with multiple 
regression measures something  
different than the positive 
slope with simple regression. 
 
The slope of -0.4091  
with respect to Coffee tells you 
the expected difference in Heart 
Damage when Coffee Consumption
is one unit larger keeping the  
value of Stress the same. 
 
The slope of 1.1082  with simple 
regression tells you the expected 
difference in Heart Damage when  
Coffee Consumption is one unit  
larger but Stress is allowed to  
also increase following the same 
pattern seen in the data set.     

  
 
  



 

 
 
We can take the data 
for a spin to better see 
what's happening.  

 
  



 
 
What does the simple  
regression look like in 
3D?  

 
  



 
 
What does the simple  
regression look like in 
3D?  
 
Is it a bird? Is it a plane? 
Is it Superman? 
 
It's just a plane! 
 
It is the best fitting  
plane (least sum of 
squared residuals) among 
all planes that are 
constrained to have a 
slope of 0 in the direction 
of Stress – i.e. it only 
takes Coffee into account. 
 
The yellow plane is the  
best fitting plane with no 
restrictions. 

 
  



 
 
The data ellipses for 
Coffee and Stress 
show the strong 
relationship between 
these two variables. 

 
  



 
 
Both the blue plane 
and the yellow plane 
fit the data quite well 
 
but 
 
the yellow plane picks 
up a downward tilt in 
the data that the blue 
planc can't catch because 
it is forced to remain 
parallel to the Stress 
axis. 

 
  



 
A few points of interest: 
 
If you draw a line for the 
regression of Stress on 
Coffee, the line where the 
two planes intersect will 
lie vertically above.  
 
The intersection line is 
the 'multivariate 
regression' line for the 
regression of both Heart 
and Stress on Coffee. 
 
With a shear 
transformation to make 
the blue line horizontal, 
you are now looking at 
the Added Variable Plot 
(aka Partial Regression 
Leverage Plot) for the 
adding Stress to the 
model. 

 
 



 
 

Looking at Models in 'beta-space'  

 
So far we have looked at our data and models in 'data space'. The axes are 
variables and the points are observations. This is the natural space to look at 
data. 

 

 
To understand regression more deeply – which will be particularly useful when 
we get to hierarchical data – we want to see models in a apace that is more 
natural for models: 'beta space'. In beta apace, the axes are coefficients, e.g. 

Coffee  and Stress  and the points are models (true models or fitted models) 
represented by their coefficients.  We can also see confidence regions and 
confidence intervals in beta space because these are merely sets of models.  The 
simple geometry of beta space elucidates some mysteries of data space. 

 

 
  



The multiple regression model represented by a plane in data space is represented by a point 
showing the fitted slope with respect to Coffee and the fitted slope with respect to Stress in beta 
space  

 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -7.7943     5.7927  -1.346    0.196     
Coffee       -0.4091     0.2918  -1.402    0.179     
Stress        1.1993     0.2244   5.345 5.36e-05 *** 
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Note that to fully represent the model we would need a 3-dimensional beta space to include an axis 
for the intercept.  For our purposes, we only need 2 dimensions, one for each predictor.  Note that 
more complex models, e.g. interaction models, quadratic models, represented by curved surfaces in 
data space, require more dimensions for beta space.   
 
 
 
 
 
A point represents the two slopes. 
Projecting the point onto the 
horizontal and vertical axes gives the 
estimated slopes for Coffee and 
Stress respectively. 
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Confidence intervals for each 
coefficient (paramenter) can be drawn 
on the respective axes. 
 

The red lines are 95% confidence 
intervals. The interval for coffee slope 
includes the origin (0). This means that 
we would accept (fail to reject is safer 
but longer) the null hypothesis that 
Coffee is not related to Heart Damage 
when controlling for Stress. 
 

On the other hand, the interval for the 
slope with respect to Stress excludes the 
origin and we would reject the null 
hypothesis that the true slope is 0 when 
controlling for Coffee Consumption. 

 

 
 
> coef( fit.mult) 
(Intercept)      Coffee      Stress  
 -7.7942856  -0.4090511   1.1992534 
 

> confint(fit.mult) 
                  2.5 %    97.5 % 
(Intercept) -20.0157291 4.4271578 
Coffee       -1.0245942 0.2064921 
Stress        0.7258632 1.6726436 
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When we look at computer output we only get to see estimated coefficients and possibly 
confidence intervals.  They only tell part of the story. The estimated coefficients may be far from 
independent, e.g. you might not be certain of a coefficient but you might be able to know that if it is 
at the higher end of its confidence interval then the other coefficient must be at the lower end  
 

A confidence region shows a set of 
combinations of slopes for Coffee 
and for Stress that are plausible.  We 
might not know much about the 
coefficient for Coffee but we do 
know that if it is high then the 
coefficient for Stress must be 
relatively low. 
 
An appendix will someday show 
formulas for the confidence ellipses 
shown here. 
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The green ellipse has joint coverage of 95%. This means that the procedure generating the ellipse 
will cover the true combination of values for Coffee  and Stress  in 95% of samples (assuming that 
errors are independent with the same normal distribution with mean 0 and that the true model is 
linear). 
 
The red ellipse has the same shape but is a 
slightly shrunken version of the green 
ellipse. It is scaled so that its shadows 
have 95% coverage as confidence 
intervals.  This means that each interval 
has 95% coverage. Jointly, they will have 
less than 95% coverage. 
 
Incidentally, the shadows of the green 
ellipse are Scheffe joint 95% confidence 
intervals with protection for a 2-
dimensional posterior hypothesis.  
A different scaling of the ellipse would 
produce shadows that are Bonferroni 95% 
confidence intervals.  
 
In summary, confidence intervals are 
generated from shadows of ellipses 

 

 (with traditional normal models) and ellipses generally convey more information than a set of 
confidence intervals. 
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What about simple regression? How is it related to multiple regression in beta space? 
THe blue interval is 95% confidence 
interval for the slope with respect to 
Coffee in the simple regression 
model. 
 
Note that it does not cover 0, thus the 
null hypothesis is rejected at the 5% 
level of significance.  
 
What can account for the red interval 
and the blue interval being so far 
apart? 
 
The red interval is a vertical shadow 
of the ellipse.  
 
It turns out that the blue interval is an 
oblique shadow of the ellipse. 
 
 

 

> coef(fit.simple) 
(Intercept)      Coffee  
  -9.313831    1.108181  
 

> confint( fit.simple ) 
                  2.5 %    97.5 % 
(Intercept) -28.6537939 10.026132 
Coffee        0.8829868  1.333375 
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The estimated slope with simple 
regression is the oblique projection 
of the centre of the ellipse through 
the point where the ellipse has a 
horizontal tangent. 
 
The oblique shadow of the red ellipse 
lies within the blue interval.  How 
much larger the interval is will be a 
function of the size of the coefficient 
for Stress. 
 
A situation like this where the slope 
for the simple regression has a 
different sign than the slope for the 
multiple regression is sometimes 
known as Simpson's Paradox.  
 
In this case the red interval is not 
significantly below zero but it is 
entirely possible to have situations 
where the two intervals are both 
significant with opposite signs. 
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When can this happen? 

 
To see this we need to know the relationship 
between the data ellipse for the predictors, 
Coffee and Stress, and the confidence 
interval for their slopes.  
 
Algebraically, the data ellipse has shape 
given by the 2 x 2 variance covariance 
matrix of the predictors: 
  

Var( ) Cov( , )
Cov( , ) Var( )

Coffee Coffee Stress
Coffee Stress Stress

 
   

 
 
The strong relationship between Coffee and 
Stress is reflected by a large value for the 
correlation between Coffee and Stress: 
 
Corr( , )

Cov( , )
SD( ) SD( )

Coffee Stress
Coffee Stress

Coffee Stress



 

The confidence ellipse has shape 1 . This means that the (shadow of) CI is wide in directions 
where the data ellipse is narrow and vice versa. I.e. we have little information about the slope for 
change in directions in which we have little date, and vice versa.  
  



 
 
 

 

 

In 2 dimensions, the relationship between   and 1 is very simple. The Confidence Ellipse has a 
shape that is the 90 degree rotation of the data ellipse. The projection line for the simple regression 
is the 90 degree rotation of the line for the regression of Stress on Coffee.   
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Implications:  

 

 
1) If 1X  and 2X  are uncorrelated, then the data ellipse is not tilted and neither is the confidenc 
ellipse. Consequently the downward projection of the center and the oblique projection are identical 
and 1 1̂̂  . 
 
2) Conversely, if 1 1̂̂   then 1X  and 2X  must be correlated. In particular, Simpson's Paradox can 
only occur if 1X  and 2X  are correlated. 
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Data ellipse for predictors: 
 

   
Single predictor 
 

 
 xx s  

  
 General 

  
1/2  i.e.  X X U  x x

where U is the unit sphere 
 

 
Confidence ellipses for slopes: 
 
Let  
 L   
have length 2 (could be k) and 

 ˆˆ L   
Then a Scheffé confidence region with 95% coverage in d dimensions is 
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For slopes: 
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A space of linear images of dimension d of a 95% Scheffé confidence region has joint 95% 
probability of coverage. 
 
Choosing d = 1, we get shadows of the ellipse that are ordinary 1-dimensional t intervals. 
 
With d = 2, and 2 predictors we get the joint 95% confidence region for both slopes simultaneously.  
 
 
 



 
d = 1 (blue), 2 (green) or 3 (red) produces Scheffé confidence regions that have 95% coverage for a priori 
hypotheses of the corresponding dimension. 



  

 
A general linear combination of Coffee  and Stress  is equivalent to a directional derivative times a 
constant. If both graphs are ‘euclidean’ (i.e. a unit of stress is plotted to have the same size as a unit of 
coffee, the confidence interval is obtained by taking the shadow of the confidence ellipse onto the 
corresponding axis in beta space.   



 
Since the shape of the confidence ellipse is the ‘inverse’ of the shape of the data ellipse (the length of 
shadow of one ellipse is inversely proportional to the size of the slice of the other ellipse), the confidence 
interval is narrower in directions in which the data ellipse is larger. 
   



 
  
 



 
Question: Which estimate ˆ 1.1082Coffee   or ˆ 0.4091Coffee   should we use to assess the potential 
harm of coffee consumption? 
 
Answer: It depends! 
 
Consider two extreme possibilities: 
 
Extreme I: Stress is a confounding factor: Stress causes an increase in coffee consumption and 
separately causes an increase in heart damage. 
In this case an 'exogenous' change in coffee consumption will not change stress and we need to 
estimate the effect of coffee keeping stress constant. 
A plausible example would be if Coffee is used as a palliative or remedy for the effect of Stress.  
Coffee consumption is highly correlated with Heart Damage because it is taken to mitigate the 
effect of Stress.   
 
 
 
 
 
 
 
 
  

Stress 

Coffee 

Heart Damage 

ˆ 0.4091Coffee  



 
Extreme II: Stress is a mediating factor: Coffee Consumption affects Stress which in turn affects 
Heart Damage in addition to possibly affecting Heart Damage directly: 
 
 
 
 
 
 
 
 
 
 
 
 
Classical path analysis total effect decomposition: 
 

total effect = direct effect + indirect effect
ˆ ˆˆ ˆ

1.1081 0.4091 1.1993 1.2651
1.1081 0.4091 1.5172

Stress
Coffee Coffee Stress Coffee     

   
  
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Coffee   
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ˆ 1.1993Stress 
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
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Note; The interpretation of this decomposition is only useful if Stress is a mediating factor. 
 
It is alway mathematically true that: 
 

ˆ

ˆ ˆˆ ˆ
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The following pages show the decomposition in data space. 
  



  
 

  
  



  
 

  
  



  
 

  
  



  
 

  
  



  
 

  
 



  
 

  
  



  
 

  
  



  
 

  
  



  
 

  
 



  
 

  
 



  
 

  
 



  
 

  
  



  
 

  
 



 
 
Discussion 
 
The correct analysis depends on the question we're asking, the data and the true model.  Since we 
usually don't know the true model our conclusions are contingent. 
 
The right answer depends on suppositions that cannot be verified from the data. Situation 1 or 2 can 
produce exactly the same data so they cannot be distinguished on the basis of the data alone 
without some external information or a willingness to make conclusions that are contigent on 
suppositions. 
 
The interpretation of regression coefficients depends on suppositions about the relationships among 
the variables. Generally these suppositions cannot be checked from the data and conclusions are 
contingent on suppositions. 
 
The interpretation of a regression coefficient depends on what other variables are in the model if 
those variables are related to the variable of interest. 
 
It might take more than one model to answer a question, e.g. questions regarding mediating factors. 



The	Fundamental	Contingency	Table	of	Statistics	
 
Or: putting what we've just seen in perspective 
 
 

The Fundamental 2 x 2 Contingency Table of Statistics 

  
Types of Data 

Experimental Observational 

Types of 
Inference 

Causal 
Where Fisher wants to be (the 
gold standard for causality) 

The real challenge 

Predictive Very rare but problematic 

Okay: This is the topic of Frank 
Harrell's Regression Modeling 
Strategies' 

 

 
Why is causal inference with observational data a challenge? 
 We can't be sure that an association between X and Y is causal. Some other variable(s), Zs, –

confounding factors – might be 'causing' the association. 
 
The magic of experiments: All Zs (measurable or not, known or not) are random with respect to X. 
So Z can only be the cause by chance which is addressed by the p-value. 
 
  



 

Strategy	with	obervational	data:	
 
 Control for all the Zs you can, using one of: 

 
Statistical control: use a model that includes Zs, include them in a statistical model and 

adjust statisitically. Modern thinking: we don't need all the Zs in the model to avoid 
bias, only the “propensity score” (prediction of X from Zs). This can fail with the 
wrong model. 

 
Matching: only perform comparisons between observations with similar Zs. Again all 

that really matters to avoid bias is the propensity score if you have the Zs. 
 
Structural methods: Build a structural causal model. 

 
 How do we fail? Don't know all relevant Zs, or can't measure them with enough accuracy 
 

Role of longitudinal data analysis: Controls for Zs (known or not, measure or not) that are 
time-invariant properties of subjects – provided we use contextual variables … which are 
really a form of  “propensity scores”. 

  



Outliers	in	Multiple	Regression	
 
Three types: 
 
1) Typical values for predictors, Y atypical 
 Little impact on ̂  

Increases size of confidence intervals 
Decreases power 
 

2) Atypical values for predictors but Y consistent with other data 
 Little impact on ̂  

Shrinks confidence intervals – good if point valid, misleading if not 
Creates false sense of power if point not valid 

 
3) Atypical values for predictors and Y not consistent with other data 
 Large impact on ̂  

Could shrink or expand CIs 
Makes a mess of everything 

  



Another artificial data set: 
 
Health as predicted by Weight and Height 
 
 
 
  



 

 
 



 
 
 
 
 
 
 
 
> fit.simple <- lm( 
Health ~  
          Weight, hh, 
subset = 
          Type == 0) 
> summary(fit.simple) 
 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.2322     0.1327   9.289 4.21e-07 *** 
Weight       -0.1027     0.1185  -0.867    0.402     
Residual standard error: 0.1774 on 13 degrees of freedom 
Multiple R-squared: 0.05463,    Adjusted R-squared: -0.01809  
F-statistic: 0.7512 on 1 and 13 DF,  p-value: 0.4018  
 



  
 

Suppose we wonder whether we should 
add Height in the model. 
 
There is no obvious reason to add height. 
We don't think that height should have 
much of an effect on Health. 
 
We can do a traditional diagnostic 
residual plot by plotting the residuals 
against Height. 
 
This is the same as rotating the data so 
Height lies along the horizontal axis and 
the plane is on edge. 
 
The traditional residual plot against an 
new variable does not show a strong 
pattern and we might be tempted to stick 
with our model showing no significant 
relationship between Height and Weight. 

  



  

 

 
 
 
If we rotate the graph around the 
vertical axis keeping the plane on edge, 
we get to see all possible plots of 
residuals against linear combinations of 
Weight and Height.  
 
There are two points of view that show 
a very strong relationship. 
 
See 
http://www.math.yorku.ca/~georges 
and scroll down.  
 
The view that produces maximum 
correlation is the added variable plot. 
 



 
Multiple regression of Health on Weight 
and Height: 
 
 
 
 
fit.mult <- lm ( Health  
        ~ Height + Weight, hh ,
             subset = Type == 
0) 
 
 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.02009    0.08529  11.960 5.02e-08 *** 
Height       0.72500    0.13639   5.315 0.000184 *** 
Weight      -0.65487    0.12380  -5.290 0.000192 *** 
 
Residual standard error: 0.1008 on 12 degrees of freedom 
Multiple R-squared: 0.7182,     Adjusted R-squared: 0.6712  
F-statistic: 15.29 on 2 and 12 DF,  p-value: 0.000501 
 



 
 
> fit.mult <- lm ( Health  
        ~ Height + Weight, hh , 
             subset = Type == 0) 
> summary( fit.mult ) 
... 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.02009    0.08529  11.960 5.02e-08 *** 
Height       0.72500    0.13639   5.315 0.000184 *** 
Weight      -0.65487    0.12380  -5.290 0.000192 *** 
 
Residual standard error: 0.1008 on 12 degrees of freedom 
Multiple R-squared: 0.7182,     Adjusted R-squared: 0.6712  
F-statistic: 15.29 on 2 and 12 DF,  p-value: 0.000501 
 
Does this mean that it's healthy to be tall? 
Now weight has a significant negative coefficient!  
Why now and not in the simple regression?  
 
 
The answer is that in a simple regression, when we compare a light person to a heavy person we are 
not controlling for Height. We are comparing a short light person to a heavy tall person. If the harm 
in being overweight is in being too heavy relative to height, then we need to control for height to 
estimate the effect of being overweight. 
 
Question: Does this still mean that it is healthier to be tall? 



Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.02009    0.08529  11.960 5.02e-08 *** 
Height       0.72500    0.13639   5.315 0.000184 ***  (Height CI) 
Weight      -0.65487    0.12380  -5.290 0.000192 ***  (Weight CI) 
 
Residual standard error: 0.1008 on 12 degrees of freedom 
Multiple R-squared: 0.7182,     Adjusted R-squared: 0.6712  
F-statistic: 15.29 on 2 and 12 DF,  p-value: 0.000501  (Conf. ellipse) 
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Beta space:  
 
 
Axes are coefficients: true or estimated 
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Confidence intervals  

 

 
Confidence interval for weight and 
for height. 
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Confidence intervals and confidence 
ellipse 
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Blue intervals are CIs for each 
predictor in a simple regression. 
 
Neither simple regression yields 
significance yet the joint regression 
is highly significant. 
 
What does this say about the use of a 
forward stepwise algorithm with this 
kind of data. 
 
Some would call Height a suppressor 
variable for the effect of Weight. 
 
This is an example where the 
traditional Venn diagrams for 
correlation fail: The whole is greater 
than the sum of its parts! 

  
 
  

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Beta Space

Weight


H

ei
gh

t



Three canonical outliers  
Green – Type I: 
     typical X, unusual Y 
 
Orange – Type II 
     atypical X, conforming Y 
 
Purple – Type III 
      atypical X, unusual Y 
 
 

  



 
  

 



View from above  
 
 
 
 
Note that orange and 
purple points are much 
farther from the data 
statistically than the 
remote blue point although 
the blue point is farther in 
Euclidean distance.  
 
Statistical distance is 
measured relative to the 
data ellipse. 

  



  
 

  



 
Fit without outliers: 



 
Confidence ellipse without outliers 
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Fit with Type I outlier 



 
 
Green: Type I outlier 
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Fit with Type II outlier 

 



 
Adding CE for Type II outlier 
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Fit with Type III outlier 

 



Adding CE with Type III outlier 
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Summary 
 
Anatomy of a 95% confidence region (interval): 
 

.95 1
,

ˆ e
q X

sqF
n    

 

 
where 
 
 q is the dimension for which we wish coverage 
   is the degrees of freedom in the estimation of es  
 X  is the variance-covariance matrix of the predictors, n is the number of observations 
 1

X
  denotes the ellipse: { : 1}Xx x x   

 es  is the standard error of regression 
  could just be   since it denotes the addition of the vector ̂  to the ellipse on the right but 

the use of  serves as a reminder that the object on the right is a transformed circle. 
 The linear shadows of the confidence region on linear subspaces are also confidence regions. q 

can be chosen to achieve accurate coverage in the desired dimension. 
  



.95 1
,

ˆ e
q X

sqF
n    

 

 
Effect of invalid outliers: 

Component Type I Type II Type III 

̂  
~ ~ large 

es  
increases none increases 

X
 

shape of  
data ellipse 

~ stretches stretches 

1
e Xs  

shape of 
confidence ellipse 

larger smaller undetermined

Overall loss of power
larger p-value

false power 
small p-value crazy 



Notes: 
 At one point people focused on Type III because the other types don't affect ̂  much. 
 

But we're interested in more than unbiased estimation. We’re also interested in inference: tests 
of hypotheses and confidence intervals.  Understanding the effect and diagnosis of Type I 
and Type II outliers is important for inference. 

 
Diagnosis: 
 

1. Normal quantile plots of residuals for normality. This can reveal outliers that produce 
large residual. But not all outliers produce large residuals. Type II won't and Type III 
might not. 
 

2. Added variable plot: great to find outliers that matter for a particular coefficient. 
 

3. Residual – Leverage plot: Plots standardized residual versus leverage = elliptical distance 
from the centre of the predictor data ellipse.  

  



Residual vs Leverage plot: 
> plot( fit.mult ) 

 

 
Vertical axis: 
Standardized residuals 
 
 
 
Horizontal axis 
Leverage   distance from 
centre of predictor data 
ellipsoid 
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Residual vs Leverage plot: where to look for what: 
> plot( fit.mult ) 

 

 
 
Vertical axis: 
Standardized residuals 
= poor fit compared to pattern 
in the rest of the data 
 Type I or Type III 
 
Horizontal axis 
Leverage   distance from 
centre of predictor data 
ellipsoid  
= atypical Xs  
= high potential influence on 
̂  
 Type II or Type III 
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Added variable plot for Weight:  

 

Vertical axis: 
Residual of Health regressed on all 
but Weight – i.e. Height –  
= portion of Health "not explained by 
Height" 
 
Horizontal axis: 
Residual of Weight regression on all 
but Weight 
= portion of Weight not explained by 
Height 
= degree of over/underweight? 
= residual from propensity score 
 
Facts: 
1) slope of AVP = ̂  in mult. reg. 
2) SE of AVP  SE in mult. reg. 
3) 2R  in AVP = partial 2R in mult. reg. 
4) CI for ̂  in AVP  CI for ̂  in 
mult.reg. 

 
The AVP provides the best insight into the relationship between Y and X in a multiple regression. 
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Interaction	with	continuous	predictors	
 
Note: Interaction is often confused with collinearity.  
 
Collinearity refers to associations among predictors: i.e. the extent to which the predictor data 
ellipse is tilted and eccentric. It is not related to Y 
 
Interaction refers to a situation in which the relationship between Y and the predictor variables is 
not 'additive',i.e. the effect of some variable depends on the levels of the other variable. It has 
nothing to do with the relationships among the Xs – only in the way they affect Y 
 
Interaction or collinearity can exist with or without the other. The presence of either does not even 
suggest the likely presence of the other. 
 
 
 
  



Ginzburg depression data: > library(car) 
> data( Ginzburg ) 
> dd <- Ginzburg 
 
Shows 'Depression' measured by Beck scale 
regressed on Fatalism and Complexity 
(flipped and renamed Simplicity). 
 
Subjects were from a clinical sample of 
depressed patients and non-psychiatric 
patients 
 
Variable shown in graph are adjusted for a 
number of other psychological variables. 
You can think of it as a 3D AVP with two 
predictors. 
 
We want to see what is predicted by 
Fatalism and Simplicity that is not already 
explained by other variables. 

 



Rotating the data:  
 

  



View from above  
 

  



Additive model and interaction model I:  
Additive model: 
 
>   fit.add <- lm( Dep  
       ~ Simp + Fatal, dd) 
 
Interaction model (multiplicative 
interaction): 
 
>  fit.int <- lm( Dep  
       ~ Simp * Fatal, dd) 
 
Note: Effect of Fatalism stronger with low 
Simplicity than with high Simplicity. Ditto 
the other way around.  
 
We suspected a possible ceiling effect which 
motivated viewing the data in 3D 

Additive model: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.2492     0.1054   2.365 0.020501 *   
Simp          0.3663     0.1004   3.649 0.000471 *** 
Fatal         0.3845     0.1004   3.829 0.000256 *** 
  



Additive model and interaction model II:  
Additive model: 
 
>   fit.add <- lm( Dep  
       ~ Simp + Fatal, dd) 
 
Interaction model (multiplicative interaction): 
 
>  fit.int <- lm( Dep  
       ~ Simp * Fatal, dd) 
 
Note that main effects of Simp and Fatal are 
estimates of the slopes over the 0 point. Here that 
happens to be the 'origin' in the graph but that is 
not necessarily the case. 

Model with interaction: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.1366     0.2023  -0.676 0.501319     
Simp          0.7736     0.2083   3.714 0.000381 *** [slope over origin] 
Fatal         0.7218     0.1811   3.987 0.000150 *** [slope over origin] 
Simp:Fatal   -0.3168     0.1430  -2.216 0.029607 *    [Is there a twist?] 
  



Additive model and interaction model III: To estimate the slope at other points (specific 
effects) we can use a Wald test (equivalent of 
ESTIMATE or CONTRASTS in PROC GLM in 
SAS) 
 
Use model formula: 

0( ) Simp Fatal

S F

E Dep Simp Fatal

Simp Fatal

  

 

  

 
 

 
Differentiate with respect to Fatal to get the 
specific effect of Fatal: 

( )
Fatal S F

E Dep Simp
Fatal

  


 


 

 
 
So to estimate this when 2Simp   we  need to 
multiply the coefficient vector:  

 
> coef( fit.int) 
(Intercept)        Simp       Fatal  Simp:Fatal  
 -0.1366333   0.7736409   0.7218125  -0.3168196 
by the matrix: 
>  L <- rbind("Fatal|Simp=2" = c( 0,0,1,2) ) 
>  L 
             [,1] [,2] [,3] [,4] 
Fatal|Simp=2    0    0    1    2 
 



 
Additive model and interaction model IV:  

 
 
 
 
 
 
 
Using the 'wald' command in 'fun.R' produces an 
the usual output plus a confidence interval. There 
is also and overall F test which is useful if our are 
estimating more than one linear function of the 
coefficients. 

> wald(fit.int, list( "Specific effect of Fatal" = L)) 
                         numDF denDF   F.value p.value 
Specific effect of Fatal     1    78 0.2829107 0.59631 
               
               Estimate Std.Error DF  t-value p-value Lower 0.95 Upper 0.95 
  Fatal|Simp=2 0.088173  0.165773 78 0.531893 0.59631  -0.241855   0.418201 
 



Estimating many slopes at once 
       
> L <- rbind( 
+           "Fatal|Simp=0" = c( 0,0,1,0), 
+           "Fatal|Simp=1" = c( 0,0,1,1), 
+           "Fatal|Simp=2" = c( 0,0,1,2), 
+           "Simp|Fatal=0" = c( 0,1,0,0), 
+           "Simp|Fatal=1" = c( 0,1,0,1), 
+           "Simp|Fatal=2" = c( 0,1,0,2)) 
> L 
             [,1] [,2] [,3] [,4] 
Fatal|Simp=0    0    0    1    0 
Fatal|Simp=1    0    0    1    1 
Fatal|Simp=2    0    0    1    2 
Simp|Fatal=0    0    1    0    0 
Simp|Fatal=1    0    1    0    1 
Simp|Fatal=2    0    1    0    2 
> wald( fit.int, list( "Specific effects" = L)) 
                 numDF denDF  F.value p.value 
Specific effects     3    78 22.75861 <.00001 
               
               Estimate Std.Error DF  t-value p-value Lower 0.95 Upper 0.95 
  Fatal|Simp=0 0.721813  0.181053 78 3.986748 0.00015   0.361364   1.082261 
  Fatal|Simp=1 0.404993  0.098438 78 4.114213 0.00010   0.209019   0.600967 
  Fatal|Simp=2 0.088173  0.165773 78 0.531893 0.59631  -0.241855   0.418201 
  Simp|Fatal=0 0.773641  0.208308 78 3.713929 0.00038   0.358932   1.188350 
  Simp|Fatal=1 0.456821  0.106172 78 4.302664 0.00005   0.245450   0.668193 
  Simp|Fatal=2 0.140002  0.141540 78 0.989133 0.32566  -0.141782   0.421786 
  

Notes: 
1) SE gets larger as you move away 
    from the centre of the data. 
2) Slopes get flatter when the other 
    variable is at the top of its range.
3) The overall F test has 3 df – not 
    6 – and is a test of the null 
    hypothesis that the surface is 
    horizontal, i.e. no regression 
    effects 



Interaction model with quadratic surface: (rotation invariant) 
 
fit.quad <- lm( 
 Dep ~ Simp * Fatal 
   + I(Simp^2) 
   + I(Fatal^2), dd) 
 

            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.10865    0.20687  -0.525   0.6010    
Simp         0.82039    0.29702   2.762   0.0072 ** 
Fatal        0.55247    0.28391   1.946   0.0554 .  
I(Simp^2)    0.08172    0.15374   0.532   0.5966    
I(Fatal^2)   0.20927    0.18663   1.121   0.2657    
Simp:Fatal  -0.55366    0.27855  -1.988   0.0505 . 



  
 
 
 
 
One observation seems to be 
pulling down on 'nose' of 
surface. 

  



 
  

 
 
Two observations seem to be pu
wings. 
 
What happens if we drop these o
 
 



  
 
 
Identifying the points and 
checking data revealed that 
one point '71' was 
misclassified. The study 
intended to cover 'reactive 
depression'. Patient 71 
suffered from endogenous 
depression and was far more 
depressed than what would 
be predicted by this model.  
 
Removing the 3 points (only 
71 was removed in the final 
analysis) produces the dark 
gray regression surface. 
Removing only 3 points 
results in a dramatic change 
in the model. 

  



 
 



Interaction	with	a	categorical	variable	
Introducing a hierarchical data set: 
 
Subsample from U.S. public and Catholic schools studied in the 1982 High School and Beyond 
(HS&B) Survey.  
 
> hs <- read.csv( "http://www.math.yorku.ca/~georges/Data/hs.csv") 
 
40 schools: 19 Public and 21 Catholic 
 
Variables (more later): 
 MathAchievement of individual students 
 SES of individual students 

 
We would like to study the relationship between MathAchievement and SES 
 
Seeing the data in each school: 
> library( lattice ) 
> xyplot( mathach ~ ses | school, hs)  # plot with panel for each school 
> hs$label <- factor(paste( substring(hs$Sector, 1,1), ":",  
          hs$school, sep ="")) # nicer labels 
> xyplot( mathach ~ ses | label, hs, # points and reg. lines in each panel 
     panel = function( x, y, ...){ 
                panel.xyplot( x, y, ...) 
                panel.lmline( x, y, ...) 
    })  
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For now we select two schools: P:2771 and C:7688 
> hs2 <- hs[ hs$label %in% c("P:2771","C:7688"),] 

 

 
 
> plot( mathach ~ ses,  
       hs2, type = 'n')       
 
# set up the axes 
         
> points( mathach ~ ses, 
      hs2,  
      subset = 
        Sector == "Catholic", 
      col = 'red',  
      pch = 16) 
 
> points( mathach ~ ses, 
      hs2,  
      subset =  
        Sector == "Public", 
      col = 'blue',  
      pch = 17) 
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> lines( with( subset(hs2, 
Sector == "Catholic"), dell( 
ses, mathach, radius = 
c(.02,1))), col = 'red', lwd 
= 2) 
 
> lines( with( subset(hs2, 
  Sector == "Public"),  
  dell( ses, mathach, 
  radius = c(.02,1))),  
  col = 'blue', lwd = 2)      
> pred <- hs2[  
    order(hs2$ses),]     
# make dataset ordered for 
plotting lines (ses in 
order) 
> pred$yhat.add <-  
    predict( fit.add, pred)   
# add yhat for additive 
model 
> pred$yhat.int <- predict( 
fit.int, pred)   # add yhat 
for interaction model 
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Additive model:  

 

 

> summary(fit.add) 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)   18.0475     0.7984  22.605  < 2e-16 *** 
ses            2.0166     1.0213   1.975   0.0509 .   
SectorPublic  -5.5188     1.2164  -4.537 1.51e-05 *** 
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Interaction model: 
 
 
 
 
Interpreting 
coefficients: 
 
> cbind(coef(fit.int)) 
                       
[,1] 
(Intercept)      
18.4006876 
ses               
0.1163449 
SectorPublic     -
5.1077227 
ses:SectorPublic  
4.1518431 

> summary( fit.int ) 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)       18.4007     0.8050  22.857  < 2e-16 *** 
ses                0.1163     1.3661   0.085   0.9323     
SectorPublic      -5.1077     1.2149  -4.204 5.52e-05 *** 
ses:SectorPublic      4.1518           2.0194   2.056      0.0423 * 
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Estimating specific effects and testing specific hypotheses: Wald test for all coefficients 

 
 
 
 
 
> cbind(coef(fit.int)) 
                       [,1] 
(Intercept)      18.4006876 
ses               0.1163449 
SectorPublic     -5.1077227 
ses:SectorPublic  4.1518431 

> wald ( fit.int) 
 numDF denDF  F.value p.value 
     4   105 208.6558 <.00001 
                   
Coefficients        Estimate Std.Error  DF   t-value p-value Lower 0.95 Upper 0.95 
  (Intercept)      18.400688  0.805032 105 22.857085 <.00001  16.804458  19.996918 
  ses               0.116345  1.366147 105  0.085163 0.93229  -2.592472   2.825162 
  SectorPublic     -5.107723  1.214860 105 -4.204372 0.00006  -7.516566  -2.698880 
  ses:SectorPublic  4.151843  2.019378 105  2.056001 0.04226   0.147789   8.155897 
 
 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0
5

10
15

20
25

ses

m
at

ha
ch



 
Estimating specific effects and testing specific hypotheses: estimating a specific level 

 
 
 
 
 
> cbind(coef(fit.int)) 
                       [,1] 
(Intercept)      18.4006876 
ses               0.1163449 
SectorPublic     -5.1077227 
ses:SectorPublic  4.1518431 

Level for Catholic when ses = 1.5 (Catholic is the REFERENCE LEVEL) 
> Lc <- rbind("ses=1.5|Catholic"= c(1, 1.5, 0, 0)) 
> Lc 
                 [,1] [,2] [,3] [,4] 
ses=1.5|Catholic    1  1.5    0    0 
>         wald( fit.int, Lc) 
  numDF denDF  F.value p.value 
1     1   105 90.64267 <.00001                
                   Estimate Std.Error  DF  t-value p-value Lower 0.95 Upper 0.95 
  ses=1.5|Catholic 18.57521  1.951045 105 9.520644 <.00001   14.70664   22.44377 
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Estimating specific effects and testing specific hypotheses: estimating a specific level 
 
 
> cbind(coef(fit.int)) 
                       [,1] 
(Intercept)      18.4006876 
ses               0.1163449 
SectorPublic     -5.1077227 
ses:SectorPublic  4.1518431 

Level for Public when ses = 1 
> Lp <- rbind( "ses=1.5|Public" = c(1, 1.5, 1, 1.5)) 
> Lp 
               [,1] [,2] [,3] [,4] 
ses=1.5|Public    1  1.5    1  1.5 
> wald( fit.int, Lp) 
  numDF denDF  F.value p.value 
1     1   105 48.15143 <.00001 
                 
                 Estimate Std.Error  DF  t-value p-value Lower 0.95 Upper 0.95 
  ses=1.5|Public 19.69525  2.838291 105 6.939123 <.00001   14.06744   25.32305 
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Estimating specific effects and testing specific hypotheses: difference 
 
> cbind(coef(fit.int)) 
                       [,1] 
(Intercept)      18.4006876 
ses               0.1163449 
SectorPublic     -5.1077227 
ses:SectorPublic  4.1518431 

Difference at ses = -1.5 
          
> Ld2 <- rbind(  "Cath - Pub | ses = 1.5" = c( 0,0,-1,1.5)) 
> wald( fit.int, Ld2 ) 
  numDF denDF  F.value p.value 
1     1   105 13.61187 0.00036 
                         
                       Estimate Std.Error  DF  t-value p-value Lower 0.95 Upper 0.95 
Cath - Pub | ses = 1.5 11.33549  3.072425 105 3.689427 0.00036   5.243436   17.42754 
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Estimating specific effects and testing specific hypotheses: simultaneous tests 
 
 
 
 
> cbind(coef(fit.int)) 
                       [,1] 
(Intercept)      18.4006876 
ses               0.1163449 
SectorPublic     -5.1077227 
ses:SectorPublic  4.1518431 

 
Testing many simultaneously  (note pattern of p-values) 
       
> Ldm <- list( "Cath - Pub" = rbind( 
+             "ses = -2" = c( 0, 0, -1, 2), 
+             "ses = -1" = c( 0, 0, -1, 1), 
+             "ses =  0" = c( 0, 0, -1, 0), 
+             "ses =  1" = c( 0, 0, -1, -1), 
+             "ses =  2" = c( 0, 0, -1, -2))) 
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> wald( fit.int, Ldm )    # note df for overall test 
           numDF denDF  F.value p.value 
Cath - Pub     2   105 12.71923   1e-05 
           
            Estimate Std.Error  DF   t-value p-value Lower 0.95 Upper 0.95 
  ses = -2 13.411409  4.021483 105  3.334941 0.00118   5.437552  21.385266 
  ses = -1  9.259566  2.178581 105  4.250274 0.00005   4.939842  13.579289 
  ses =  0  5.107723  1.214860 105  4.204372 0.00006   2.698880   7.516566 
  ses =  1  0.955880  2.522168 105  0.378991 0.70546  -4.045113   5.956873 
  ses =  2 -3.195963  4.404833 105 -0.725558 0.46972 -11.929933   5.538007 
 
Testing selected parameters with pattern matching 
       note df for overall test and compare with previous 
         
> wald( fit.int, "Sector" ) #       numDF denDF  F.value p.value 
Sector     2   105 12.71923   1e-05 
                   
Coefficients        Estimate Std.Error  DF   t-value p-value Lower 0.95 Upper 0.95 
  SectorPublic     -5.107723  1.214860 105 -4.204372 0.00006  -7.516566  -2.698880 
  ses:SectorPublic  4.151843  2.019378 105  2.056001 0.04226   0.147789   8.155897 
 
  



 

Appendix	1	
 
Anatomy of a confidence region: 
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,
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where 
 
 q is the dimension for which we wish coverage 
   is the degrees of freedom in the estimation of es  
 X  is the variance-covariance matrix of the predictors 
 1

X
  denotes the ellipse: { : 1}Xx x x   

 es  is the standard error of regression, n is the number of observations. 
  could just be   since it denotes the addition of the vector ̂  to the ellipse on the right but 

the use of  serves as a reminder that the object on the right is a transformed circle. 
 The linear shadows of the confidence region on linear subspaces are also confidence regions. q 

can be chosen to achieve accurate coverage in the desired dimension. 



 
q = 1 (blue), 2 (green) or 3 (red) produces confidence regions that have 95% coverage for a priori 
hypotheses of the corresponding dimension. 
 
  



Appendix	2:	
Dropping a non-significant term? 
 
Fact or myth: “If a term is not significant, dropping it should not make much of a 
difference” 
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If  2  is not significant, what effect can dropping 
it have on the model? 
 
What happens to the coefficient for 1X  in the 
following situation?  
  



 
When we drop 2X  the effect of 1X  goes from appearing not to be 
significant to being highly significant.  If it is important to control 
for 2X  in interpreting the coefficient of 1X  then dropping 1X  leads 
to a fallacious result even though the effect of 1X  is not significant. 



Appendix	3:	
Adding non-significant terms? 
Fact or myth: If neither 1X  nor 2X  are significant in simple 
regressions, then they are unlikely to be significant in a multiple 
regression. 
Consider: 

 
What does this suggest about forward stepwise regression? 


