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gave two definitions for probabile:

e That which usually happens A

o relative frequency
o {frequentist objective interpretation

e That which 1s commonly believed
o degree of belief in a hypothesis
o Bayesian subjective interpretation
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From ideology to utility

» Until recently the debate was mainly philosophical. F methods
were much casier

» With improvements in MCMC, B methods have become more
feasible and surpass F methods for many complex problems
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R. A. Fisher’s clever idea

The Lady Tasting Tea and the p-value: a frequentist
basis for inference

In 1919, Dr. Muriel Bristol at Rothampsted Experimental

Station claimed she could tell whether the milk was poured in
first or the tea first.

» Imagine that she was offered 12 cups of tea in random order — 6
prepared milk first and 6 tea first
» She got 10 of the 12 right

What does this tell us about her ability to tell the difference?



Rationale behind the p-value

How can we quantify the evidence that she can tell the
difference?

» Pretend that she can’t tell the difference: ‘null hypothesis’ Hy

» The probability of getting 10 out 12 right is p(y|Hp) = 0.038961

» But the probability of any single outcome, even one consistent
with Hg, might be very small and might say nothing against H|

» Fisher’s idea: use the tail probability, the probability of y as or
more extreme than the observed value of y

p-value:

Pr(y™|Ho) = p(y = 10[Ho) + p(y = 12|Ho)
0.038961 -+ 0.001082

0.040043



Proof by contradiction /implausibility

Contradiction Implausibility

A implies not B A implies B is improbable
B true B is observed

Therefore A is false Therefore A is unlikely

Courtroom analogy: presumption of innocence

Hy: Innocence
Consider probability of data (evidence) | innocence

If evidence inconsistent with innocence, then reject innocence
and find guilt



Sally Clark

Young lawyer, gives birth to first son in September 1996

son dies, apparently of SIDS, at 10 weeks

second son born a year later

dies, apparently of SIDS, at 8 weeks

only evidence of trauma consistent with resuscitation attempts
charged with two counts of murder

vV v v vV v Y



Sir Roy Meadow

» distinguished pediatrician
» as expert witness testifies:

» probability of one SIDS death: —

8,500
- 2
> probability of two: (8,5100) - 72,2510,000
» ‘if she’s innocent, the chances of this happening are 1 in 72
million’

jury convicts Sally Clark of murder in November 1999

first appeal lost in October 2000

second appeal succeeds and Sally Clark is released in January 2003
she dies in 2007 at the age of 42

vV v . v Y
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Proot beyond a reasonable doubt?

A very small value of the probability of innocence ‘given’ the
evidence?

Probability( Innocence | Evidence )?

What did Roy Meadow learn from stats?

How to calculate:
Probability( Evidence™ | Innocence )

the p-value, the probability of obtaining evidence
as or more contradictory assuming innocence.



The tundamental neurosis of statistics

» We really want p(f|y) but we’d have to accept p(6)
» So we give the world p(y™16))

» Most people quietly think it’s a proxy for p(0|y)
» if not, what in the world could it be?

» (igerenzer:

» the confusion created by this unresolved conflict among
statisticians, which is both suppressed and inherent in statistics
textbooks, leads to a systemic neurosis in science for which the
ritual of NHST is a form of conflict resolution — like compulsive
hand washing — which makes it resistant to logical arguments

» One is most strongly committed to the beliefs one does not
understand






If p-values are so bad,

why do we still use
them?



e For many common problems they are consistent
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If you feel puzzled, you are not alone: (Reid, 2017)

SIX MONTHS LATER:
OUR FIELD HAS BEEN STRUGGLE NO MORE! 1

STRUGGLING WITH THIS T™ HERE TO SOLVE. WO, THIS PROBLEM
PROBLEM FOR YEARS. IT \JITH ALGORITHIMS! 15 REALLY HARD.

Rinatier e

From a 1996 interview:

Nancy Reid: Why 1s conditional inference so hard?

Sir David Cox: I expect we’re all missing something but I
don’t know what it is.
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If you’ve walked downhill, you need to toss a biased coin with:

p ( - | Y)
b (glast | Y)

Usually, it's very hard to compute the numerator and the denominator of this ratio.

Pr(Heads) =

However, the ratio itself is, for many models, a relative cinch:

p(gnew|Y) _ p(9n8w|Y)/p(Y) _ p(Ya Gnew) 5 p(gne‘w)
p(glast IY) p(glast | Y) /p(Y) p(Ya glast ) p(glast )

Which is just the likelihood ratio times the prior ratio.

Pr(Heads) =

The more you’ve gone down, the lower the probability of a Head.

« |f you get a Head, plant a stake at your new position.
« If you get a Tail, step back to the last position and plant a second stake there.
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Figure 7: Samples generated b); random-walk Metropolis, Gibbs sampling, and NUTS. The
plots compare 1,000 independent draws from a highly correlated 250-dimensi
distribution (right) with 1,000,000 samples (thinned to 1,000 samples for display)
generated by random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000
samples for display) generated by Gibbs sampling (second from left), and 1,000
samples generated by NUTS (second from right). Only the first two dimensions
are shown here.
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Stan

Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the

social, biological, and physical sciences, engineering, and business.
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Defining a model 1n Stan

data {
int N; // number of observations
int P; // number of columns of X matrix (including intercept)
matrix[N,P] X; // X matrix including intercept
vector[N] y; // response

}

parameters {
vector[P] beta; // default uniform prior if nothing specied in model
real <lower=0> sigma; // uniform on positive reals

}

model {

y ~ normal( X * beta, sigma ); // note that * is matrix mult.
// For elementwise multiplication use .*



Data

head( Xmat <- model.matrix(Health ~ Weight + Height, dd) )

(Intercept) Weight Height
.3355 ©.6008
.6890 0.9449
.6980 0.6150
.7617 1.2340
.8910 0.7870
.9330 0.9150

Ul A W N
N
©O 0O 0 ® ® ®

dat_list <- list(N
X

nrow(Xmat), P = ncol(Xmat),
Xmat, y = dd$Health)



$N

[1] 16
$P
[1] 3
$X

(Intercept) Weight Height
1 1 ©.3355 0.6008
2 1 ©.6890 0.9440
3 1 ©.6980 0.6150
- 1 ©.7617 1.2340
5 1 ©.89190 0.7870
6 1 ©.9330 0.9150
& 1 ©.9430 1.0490
8 1 1.0060 1.1840
9 1 1.0200 ©.7370
10 1 1.2150 1.0770
11 1 1.2230 1.1280
12 1 1.2360 1.5000
13 1 1.3530 1.53106
14 1 1.3770 1.1500
15 1 2.0734 1.9340
18 1 1.9000 ©0.2000
attr(,"assign")
[1] 0 1 2
$y

[1] 1.2806 1.208 1.036 1.395 0.912 1.175 1.237 1.048 1.003 ©.943 0.912
[12] 1.311 1.411 ©.920 1.073 1.500



fit_stan <- sampling(reg model dso, dat list)

— it stan
w Snip |

Inference for Stan model: 5a6361673e39acd797b5518d36e20615.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 507% 75% 97.5% n_eff Rhat

beta[l] 1.16 0.60 6.20 ©.77 1.3 1.16 1.29 1.55 2035 1
beta[2] ©.04 ©.00 0.15 -0.26 -0.06 ©0.04 ©0.14 ©.34 1980 1
beta[3] -0.65 ©.00 0.16 -0.36 -0.15 -0.66 ©0.04 ©0.26 2135 1
sigma 0.23 0.60 6.5 0.15 6.19 6.22 0.26 6.36 1713 1
lp__ 14.88 ©.05 1.64 10.52 14.08 15.25 16.08 16.93 1084 1

Samples were drawn using NUTS(diag_e) at Mon Jun ©5 22:52:12 2017.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
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pairs(fit_stan)
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traceplot(fit_stan)
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Robust model: Just change the distribution of Y

data {
int N; // number of observations
int P; // number of columns of X matrix (including intercept)

matrix[N,P] X; // X matrix including intercept
vector[N] y; // response
int nu; // degrees for freedom for student_t

}

parameters {
vector[P] beta; // default uniform prior if nothing specied in model

real <lower=0> sigma;

¥

model {
y ~ student_t(nu, X * beta, sigma );

g

2))

fit3_stan_2 <- sampling(robust_model dso, c(dat_list, nu






Traumatic Brain Injury

e Recovery after coma
e Non-linear asymptotic recovery curves
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1
// Multivariate model for VIQ and PIQ

//

data {
int N;
int J;
matrix[N,2] iq;
vector[N] time;
vector[N] coma;
int id[N];



parameters {
vector <lower=1l,upper=10000>[2] hrt;
vector <lower=0,upper=200>[2] asymp;
vector <lower=-100,upper=100>[2] init_def;
vector [2] bcoma;
vector[2] u[J];
cov_matrix[2] Sigma;
cov_matrix[2] Sigma_u;

}

transformed parameters {
real hrt_diff;
real bcoma_diff;
hrt_diff = hrt[2] - hrt[1];
bcoma_diff = bcomal[2] - bcomall]l;
}



model {
vector[2] eta;
// for the multinormal distribution we need to Toop over
for(j in 1:3) u[j] ~ multi_normal(zero, Sigma_u);
for(n in 1:N) {
eta[l] = asymp[1l] + ul[id[n],1] + bcoma[l] * comal[n] +
init_def[1l] * exp(-time[n]/Chrt[1]%1n2));
eta[2] = asymp[2] + u[id[n],2] + bcoma[2] * coma[n] +
init_def[2] * exp(-time[n]/Chrt[2]*1n2));
ig[n,] ~ multi_normal(eta, Sigma);
}
}

observations
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Inference for Stan model: asymp_model 4.

4 chains, each with iter=2000; warmup=100@; thin=1;

post-warmup draws per chain=100@, total post-warmup draws=48€0.

hrt[1]
hrt[2]
asymp[1]
asymp[2]
init_def[1]
init_def[2]
bcoma[1]
bcoma[2]
Sigma[1,1]
Sigma[2,1]
Sigma[1,2]
Sigma[2,2]
Sigma_uf1,1]
Sigma_u[2,1]
Sigma_u[1,2]
Sigma_u[2,2]
hrt_diff
bcoma_diff

lp__

mean se_mean

65.
249,
.79
«53
.34
.46
sid 2
.93
.16
.38
.38
« 72
162.
.42

119,

176.
184.
=1
-2604.

99

119

18
32

62

42
27
14
22
98

0.

O ® ®0 0O © 0 ® O O 0O ®O O OO O® ® ® B

42 18.
.82 53.
.06
+ 07
:12
.04
.02
.02
.10
-12
o I
+17
.31
.34
.34
.43
.93
.e1
.66

o b P PO O®R B BR R

N v N BB
® ® O N 0 00 W

sd
23
51

.61
.97
.88
.95
.40
.42
=19
22
orip.
.55
.63
.19
19
.67
.12
.33
.41

36.
160.

128.
86.
86.

135.
99.
-1.

-2644,

.5%

67 52.
66 211.
57 98
.62 29
91 =25
A7 -20
.50 -0
.78 =2
.82 30
.02 17
.02 17
23 45.
29 148.
67 1e6.
67 106.
45 le@.
58 147.
88 -1
44 -2619.

25%
36 62.
31 244,
.73 99
+ 23 100
.94 =22
i -19
.99 -0
222 =1
.24 32
.47 20
.47 20
e7 49.
57 160.
59 118.
59 118.
26 174.
66 178.
.44 o
18 -2665

50%

78 75
72 279
.80 lee
.52 le1l
« Il -20
.52 -18
«d2 -9
.94 =1
.82 35
.00 22
.00 22
34 53
99 175
38 131.
38 131,
76 191.
34 213.
22 -1.
.84 -25909.

75% 97 -
.12 1e8.
.99  373.
.87 1le2.
.86 le4.
.00 -15.
.15 -15.
.44

.64 =1.
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