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1 Relationship between Leverage and Mahalanobis
Distance in Predictor Space

Given a data matrix X, the ‘full’ n × p data matrix including an intercept has the form
[1X] where 1 is a n × 1 column of 1s.

The vector of leverages in a regression in which the predictor variables are given by X plus
an intercept term is the diagonal of the projection matrix (often known as the ‘hat
matrix’) onto the linear space spanned by the unit vector and the columns of X, L(1, X).

Under the assumption that [1X] is of full column rank:

H = [1X] ([1X]′[1X])−1 [1X]′

= [1X]
(

n 1′X
X ′1 X ′X

)−1
[1X]′

As a projection matrix, H is invariant under location scale transformations of the data
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matrix X. Replacing X with Xc in which each column is centered so that X ′
c1 = 0

H = [1Xc] ([1Xc]′[1Xc])−1 [1Xc]′

= [1Xc]
(

n 0
0 X ′

cXc

)−1
[1Xc]′

= 1
n

11′ + Xc(X ′
cXc)−1X ′

c

= 1
n

11′ + 1
n

XcΣ−1
X X ′

c

The diagonal elements of XcΣ−1
X X ′

c are the squares of Mahalanobis distances of individual
observations standardized by the maximum likelihood estimate of variance using division
by n.

Thus, using the diagonal elements:

hii = 1
n

(1 + Z2
i )

This is a result that is valid for linear multiple regression for any number of predictor
variables with an intercept term. In simple regression, p = 1 and Zi, with an appropriate
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sign, is simply the the ‘Z-score’ for ith predictor observation.

2 Some consequences
1. It is easily shown that

∑
i hii = 1 + p:∑

i

hii = trace(H)

= trace
(

[1X] ([1X]′[1X])−1 [1X]′
)

= trace
(

([1X]′[1X])−1 [1X]′[1X]
)

since trace(AB) = trace(BA)

= trace I(p+1)×(p+1)

= p + 1

so that:
n∑

i=1
Z2

i = np

and
Z2

i = p
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which concords with expectation since Z2
i has a distribution that is approximately

χ2
p.

2. We also know that 1
n ≤ hii ≤ 1 so that

0 ≤ Z2
i ≤ n − 1

3. If X is a n × p matrix of predictor variables in a least-squares regression, then Zi is
the Mahalanobis distance of the ith case in predictor space.

4. The ‘residual-leverage’ plot, which is the fourth plot produced by the ‘plot’
command in R applied to ‘lm’ objects, plots hii = 1+Z2

i

n on the horizontal axis.
5. Mahalanobis distance is the generalization of the univariate Z-score to all dimensions.

Strictly speaking, in one dimension, Mahalanobis distance is the absolute value of
the Z-score.

6. The ellipse in predictor space:

Er =
{

x ∈ Rp : (x − x̄)′Σ̂−1
X (x − x̄) = r2

}
contains the points (if any) with leverage equal to 1

n (1 + r2)
7. The concept works for linear regression in βs even if not linear in the predictors.

To compute Mahalanobis distance, you can write your own function, or you can consider
the ‘mahalanobis’ function in base R.
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For illustration, the following plot shows the predictor data ellipses of radii 1, 2 and 3,
corresponding to Mahalanobis distances of 1, 2, and 3, and leverages of 0.1, 0.25, and 0.5
since n = 20.
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The next plot also shows the predictor data ellipses of radii 1, 2 and 3, corresponding to
Mahalanobis distances of 1, 2, and 3, and leverages of 0.1, 0.25, and 0.5 since n = 20 but
in a quadratic regression. Note that although the predictors are not normally distributed,
the ellipse captures the first and second moments of the predictors, and the least-squares
linear regression only depends on the first and second moments.
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