
Appendix B

Generalized Linear Model
Theory

We describe the generalized linear model as formulated by Nelder and Wed-
derburn (1972), and discuss estimation of the parameters and tests of hy-
potheses.

B.1 The Model

Let y1, . . . , yn denote n independent observations on a response. We treat
yi as a realization of a random variable Yi. In the general linear model we
assume that Yi has a normal distribution with mean µi and variance σ2

Yi ∼ N(µi, σ
2),

and we further assume that the expected value µi is a linear function of p
predictors that take values x′

i = (xi1, . . . , xip) for the i-th case, so that

µi = x′
iβ,

where β is a vector of unknown parameters.
We will generalize this in two steps, dealing with the stochastic and

systematic components of the model.
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B.1.1 The Exponential Family

We will assume that the observations come from a distribution in the expo-
nential family with probability density function

f(yi) = exp{yiθi − b(θi)
ai(φ)

+ c(yi, φ)}. (B.1)

Here θi and φ are parameters and ai(φ), b(θi) and c(yi, φ) are known func-
tions. In all models considered in these notes the function ai(φ) has the
form

ai(φ) = φ/pi,

where pi is a known prior weight, usually 1.
The parameters θi and φ are essentially location and scale parameters.

It can be shown that if Yi has a distribution in the exponential family then
it has mean and variance

E(Yi) = µi = b′(θi) (B.2)
var(Yi) = σ2

i = b′′(θi)ai(φ), (B.3)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi). When
ai(φ) = φ/pi the variance has the simpler form

var(Yi) = σ2
i = φb′′(θi)/pi.

The exponential family just defined includes as special cases the normal,
binomial, Poisson, exponential, gamma and inverse Gaussian distributions.

Example: The normal distribution has density

f(yi) =
1√

2πσ2
exp{−1

2
(yi − µi)2

σ2
}.

Expanding the square in the exponent we get (yi − µi)2 = y2
i + µ2

i − 2yiµi,
so the coefficient of yi is µi/σ2. This result identifies θi as µi and φ as σ2,
with ai(φ) = φ. Now write

f(yi) = exp{
yiµi − 1

2µ2
i

σ2
− y2

i

2σ2
− 1

2
log(2πσ2)}.

This shows that b(θi) = 1
2θ2

i (recall that θi = µi). Let us check the mean
and variance:

E(Yi) = b′(θi) = θi = µi,

var(Yi) = b′′(θi)ai(φ) = σ2.
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Try to generalize this result to the case where Yi has a normal distribution
with mean µi and variance σ2/ni for known constants ni, as would be the
case if the Yi represented sample means.2

Example: In Problem Set 1 you will show that the exponential distribution
with density

f(yi) = λi exp{−λiyi}

belongs to the exponential family.2
In Sections B.4 and B.5 we verify that the binomial and Poisson distri-

butions also belong to this family.

B.1.2 The Link Function

The second element of the generalization is that instead of modeling the
mean, as before, we will introduce a one-to-one continuous differentiable
transformation g(µi) and focus on

ηi = g(µi). (B.4)

The function g(µi) will be called the link function. Examples of link func-
tions include the identity, log, reciprocal, logit and probit.

We further assume that the transformed mean follows a linear model, so
that

ηi = x′
iβ. (B.5)

The quantity ηi is called the linear predictor. Note that the model for ηi

is pleasantly simple. Since the link function is one-to-one we can invert it to
obtain

µi = g−1(x′
iβ).

The model for µi is usually more complicated than the model for ηi.
Note that we do not transform the response yi, but rather its expected

value µi. A model where log yi is linear on xi, for example, is not the same
as a generalized linear model where log µi is linear on xi.

Example: The standard linear model we have studied so far can be described
as a generalized linear model with normal errors and identity link, so that

ηi = µi.

It also happens that µi, and therefore ηi, is the same as θi, the parameter in
the exponential family density.2
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When the link function makes the linear predictor ηi the same as the
canonical parameter θi, we say that we have a canonical link . The identity
is the canonical link for the normal distribution. In later sections we will see
that the logit is the canonical link for the binomial distribution and the log
is the canonical link for the Poisson distribution. This leads to some natural
pairings:

Error Link
Normal Identity
Binomial Logit
Poisson Log

However, other combinations are also possible. An advantage of canoni-
cal links is that a minimal sufficient statistic for β exists, i.e. all the informa-
tion about β is contained in a function of the data of the same dimensionality
as β.

B.2 Maximum Likelihood Estimation

An important practical feature of generalized linear models is that they can
all be fit to data using the same algorithm, a form of iteratively re-weighted
least squares. In this section we describe the algorithm.

Given a trial estimate of the parameters β̂, we calculate the estimated
linear predictor η̂i = x′

iβ̂ and use that to obtain the fitted values µ̂i =
g−1(η̂i). Using these quantities, we calculate the working dependent variable

zi = η̂i + (yi − µ̂i)
dηi

dµi
, (B.6)

where the rightmost term is the derivative of the link function evaluated at
the trial estimate.

Next we calculate the iterative weights

wi = pi/[b′′(θi)(
dηi

dµi
)2], (B.7)

where b′′(θi) is the second derivative of b(θi) evaluated at the trial estimate
and we have assumed that ai(φ) has the usual form φ/pi. This weight is
inversely proportional to the variance of the working dependent variable zi

given the current estimates of the parameters, with proportionality factor φ.
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Finally, we obtain an improved estimate of β regressing the working
dependent variable zi on the predictors xi using the weights wi, i.e. we
calculate the weighted least-squares estimate

β̂ = (X′WX)−1X′Wz, (B.8)

where X is the model matrix, W is a diagonal matrix of weights with entries
wi given by (B.7) and z is a response vector with entries zi given by (B.6).

The procedure is repeated until successive estimates change by less than
a specified small amount. McCullagh and Nelder (1989) prove that this
algorithm is equivalent to Fisher scoring and leads to maximum likelihood
estimates. These authors consider the case of general ai(φ) and include φ in
their expression for the iterative weight. In other words, they use w∗

i = φwi,
where wi is the weight used here. The proportionality factor φ cancels out
when you calculate the weighted least-squares estimates using (B.8), so the
estimator is exactly the same. I prefer to show φ explicitly rather than
include it in W.

Example: For normal data with identity link ηi = µi, so the derivative is
dηi/dµi = 1 and the working dependent variable is yi itself. Since in addition
b′′(θi) = 1 and pi = 1, the weights are constant and no iteration is required.2

In Sections B.4 and B.5 we derive the working dependent variable and the
iterative weights required for binomial data with link logit and for Poisson
data with link log. In both cases iteration will usually be necessary.

Starting values may be obtained by applying the link to the data, i.e.
we take µ̂i = yi and η̂i = g(µ̂i). Sometimes this requires a few adjustments,
for example to avoid taking the log of zero, and we will discuss these at the
appropriate time.

B.3 Tests of Hypotheses

We consider Wald tests and likelihood ratio tests, introducing the deviance
statistic.

B.3.1 Wald Tests

The Wald test follows immediately from the fact that the information matrix
for generalized linear models is given by

I(β) = X′WX/φ, (B.9)
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so the large sample distribution of the maximum likelihood estimator β̂ is
multivariate normal

β̂ ∼ Np(β, (X′WX)−1φ). (B.10)

with mean β and variance-covariance matrix (X′WX)−1φ.
Tests for subsets of β are based on the corresponding marginal normal

distributions.

Example: In the case of normal errors with identity link we have W = I
(where I denotes the identity matrix), φ = σ2, and the exact distribution
of β̂ is multivariate normal with mean β and variance-covariance matrix
(X′X)−1σ2.

B.3.2 Likelihood Ratio Tests and The Deviance

We will show how the likelihood ratio criterion for comparing any two nested
models, say ω1 ⊂ ω2, can be constructed in terms of a statistic called the
deviance and an unknown scale parameter φ.

Consider first comparing a model of interest ω with a saturated model Ω
that provides a separate parameter for each observation.

Let µ̂i denote the fitted values under ω and let θ̂i denote the correspond-
ing estimates of the canonical parameters. Similarly, let µ̃O = yi and θ̃i

denote the corresponding estimates under Ω.
The likelihood ratio criterion to compare these two models in the expo-

nential family has the form

−2 log λ = 2
n∑

i=1

yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)
ai(φ)

.

Assume as usual that ai(φ) = φ/pi for known prior weights pi. Then we
can write the likelihood-ratio criterion as follows:

−2 log λ =
D(y, µ̂)

φ
. (B.11)

The numerator of this expression does not depend on unknown parameters
and is called the deviance:

D(y, µ̂) = 2
n∑

i=1

pi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)]. (B.12)

The likelihood ratio criterion −2 log L is the deviance divided by the scale
parameter φ, and is called the scaled deviance.
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Example: Recall that for the normal distribution we had θi = µi, b(θi) = 1
2θ2

i ,
and ai(φ) = σ2, so the prior weights are pi = 1. Thus, the deviance is

D(y, µ̂) = 2
∑
{yi(yi − µ̂i)−

1
2
y2

i +
1
2
µ̂i

2}

= 2
∑
{1
2
y2

i − yiµ̂i
2 +

1
2
µ̂i

2}

=
∑

(yi − µ̂i)2

our good old friend, the residual sum of squares.2
Let us now return to the comparison of two nested models ω1, with p1

parameters, and ω2, with p2 parameters, such that ω1 ∈ ω2 and p2 > p1.
The log of the ratio of maximized likelihoods under the two models can

be written as a difference of deviances, since the maximized log-likelihood
under the saturated model cancels out. Thus, we have

−2 log λ =
D(ω1)−D(ω2)

φ
(B.13)

The scale parameter φ is either known or estimated using the larger model
ω2.

Large sample theory tells us that the asymptotic distribution of this
criterion under the usual regularity conditions is χ2

ν with ν = p2−p1 degrees
of freedom.

Example: In the linear model with normal errors we estimate the unknown
scale parameter φ using the residual sum of squares of the larger model, so
the criterion becomes

−2 log λ =
RSS(ω1)− RSS(ω2)
RSS(ω2)/(n− p2)

.

In large samples the approximate distribution of this criterion is χ2
ν with

ν = p2−p1 degrees of freedom. Under normality, however, we have an exact
result: dividing the criterion by p2 − p1 we obtain an F with p2 − p1 and
n − p2 degrees of freedom. Note that as n → ∞ the degrees of freedom in
the denominator approach ∞ and the F converges to (p2 − p1)χ2, so the
asymptotic and exact criteria become equivalent.2

In Sections B.4 and B.5 we will construct likelihood ratio tests for bi-
nomial and Poisson data. In those cases φ = 1 (unless one allows over-
dispersion and estimates φ, but that’s another story) and the deviance is
the same as the scaled deviance. All our tests will be based on asymptotic
χ2 statistics.
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B.4 Binomial Errors and Link Logit

We apply the theory of generalized linear models to the case of binary data,
and in particular to logistic regression models.

B.4.1 The Binomial Distribution

First we verify that the binomial distribution B(ni, πi) belongs to the expo-
nential family of Nelder and Wedderburn (1972). The binomial probability
distribution function (p.d.f.) is

fi(yi) =

(
ni

yi

)
πyi

i (1− πi)ni−yi . (B.14)

Taking logs we find that

log fi(yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(
ni

yi

)
.

Collecting terms on yi we can write

log fi(yi) = yi log(
πi

1− πi
) + ni log(1− πi) + log

(
ni

yi

)
.

This expression has the general exponential form

log fi(yi) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

with the following equivalences: Looking first at the coefficient of yi we note
that the canonical parameter is the logit of πi

θi = log(
πi

1− πi
). (B.15)

Solving for πi we see that

πi =
eθi

1 + eθi
, so 1− πi =

1
1 + eθi

.

If we rewrite the second term in the p.d.f. as a function of θi, so log(1−πi) =
− log(1 + eθi), we can identify the cumulant function b(θi) as

b(θi) = ni log(1 + eθi).
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The remaining term in the p.d.f. is a function of yi but not πi, leading to

c(yi, φ) = log

(
ni

yi

)
.

Note finally that we may set ai(φ) = φ and φ = 1.
Let us verify the mean and variance. Differentiating b(θi) with respect

to θi we find that

µi = b′(θi) = ni
eθi

1 + eθi
= niπi,

in agreement with what we knew from elementary statistics. Differentiating
again using the quotient rule, we find that

vi = ai(φ)b′′(θi) = ni
eθi

(1 + eθi)2
= niπi(1− πi),

again in agreement with what we knew before.
In this development I have worked with the binomial count yi, which

takes values 0(1)ni. McCullagh and Nelder (1989) work with the propor-
tion pi = yi/ni, which takes values 0(1/ni)1. This explains the differences
between my results and their Table 2.1.

B.4.2 Fisher Scoring in Logistic Regression

Let us now find the working dependent variable and the iterative weight
used in the Fisher scoring algorithm for estimating the parameters in logistic
regression, where we model

ηi = logit(πi). (B.16)

It will be convenient to write the link function in terms of the mean µi, as:

ηi = log(
πi

1− πi
) = log(

µi

ni − µi
),

which can also be written as ηi = log(µi)− log(ni − µi).
Differentiating with respect to µi we find that

dηi

dµi
=

1
µi

+
1

ni − µi
=

ni

µi(ni − µi)
=

1
niπi(1− πi)

.

The working dependent variable, which in general is

zi = ηi + (yi − µi)
dηi

dµi
,
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turns out to be
zi = ηi +

yi − niπi

niπi(1− πi)
. (B.17)

The iterative weight turns out to be

wi = 1/

[
b′′(θi)(

dηi

dµi
)2
]
,

=
1

niπi(1− πi)
[niπi(1− πi)]2,

and simplifies to
wi = niπi(1− πi). (B.18)

Note that the weight is inversely proportional to the variance of the
working dependent variable. The results here agree exactly with the results
in Chapter 4 of McCullagh and Nelder (1989).

Exercise: Obtain analogous results for Probit analysis, where one models

ηi = Φ−1(µi),

where Φ() is the standard normal cdf. Hint: To calculate the derivative of
the link function find dµi/dηi and take reciprocals.2

B.4.3 The Binomial Deviance

Finally, let us figure out the binomial deviance. Let µ̂i denote the m.l.e. of
µi under the model of interest, and let µ̃i = yi denote the m.l.e. under the
saturated model. From first principles,

D = 2
∑

[yi log(
yi

ni
) + (ni − yi) log(

ni − yi

ni
)

−yi log(
µ̂i

ni
)− (ni − yi) log(

ni − µ̂i

ni
)].

Note that all terms involving log(ni) cancel out. Collecting terms on yi and
on ni − yi we find that

D = 2
∑

[yi log(
yi

µ̂i
) + (ni − yi) log(

ni − yi

ni − µi
)]. (B.19)

Alternatively, you may obtain this result from the general form of the
deviance given in Section B.3.
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Note that the binomial deviance has the form

D = 2
∑

oi log(
oi

ei
),

where oi denotes observed, ei denotes expected (under the model of interest)
and the sum is over both “successes” and “failures” for each i (i.e. we have
a contribution from yi and one from ni − yi).

For grouped data the deviance has an asymptotic chi-squared distribu-
tion as ni →∞ for all i, and can be used as a goodness of fit test.

More generally, the difference in deviances between nested models (i.e.
the log of the likelihood ratio test criterion) has an asymptotic chi-squared
distribution as the number of groups k → ∞ or the size of each group
ni →∞, provided the number of parameters stays fixed.

As a general rule of thumb due to Cochrane (1950), the asymptotic chi-
squared distribution provides a reasonable approximation when all expected
frequencies (both µ̂i and ni− µ̂i) under the larger model exceed one, and at
least 80% exceed five.

B.5 Poisson Errors and Link Log

Let us now apply the general theory to the Poisson case, with emphasis on
the log link function.

B.5.1 The Poisson Distribution

A Poisson random variable has probability distribution function

fi(yi) =
e−µiµyi

i

yi!
(B.20)

for yi = 0, 1, 2, . . .. The moments are

E(Yi) = var(Yi) = µi.

Let us verify that this distribution belongs to the exponential family as
defined by Nelder and Wedderburn (1972). Taking logs we find

log fi(yi) = yi log(µi)− µi − log(yi!).

Looking at the coefficient of yi we see immediately that the canonical
parameter is

θi = log(µi), (B.21)
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and therefore that the canonical link is the log. Solving for µi we obtain the
inverse link

µi = eθi ,

and we see that we can write the second term in the p.d.f. as

b(θi) = eθi .

The last remaining term is a function of yi only, so we identify

c(yi, φ) = − log(yi!).

Finally, note that we can take ai(φ) = φ and φ = 1, just as we did in the
binomial case.

Let us verify the mean and variance. Differentiating the cumulant func-
tion b(θi) we have

µi = b′(θi) = eθi = µi,

and differentiating again we have

vi = ai(φ)b′′(θi) = eθi = µi.

Note that the mean equals the variance.

B.5.2 Fisher Scoring in Log-linear Models

We now consider the Fisher scoring algorithm for Poisson regression models
with canonical link, where we model

ηi = log(µi). (B.22)

The derivative of the link is easily seen to be

dηi

dµi
=

1
µi

.

Thus, the working dependent variable has the form

zi = ηi +
yi − µi

µi
. (B.23)

The iterative weight is

wi = 1/

[
b′′(θi)(

dηi

dµi
)2
]

= 1/

[
µi

1
µ2

i

]
,
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and simplifies to
wi = µi. (B.24)

Note again that the weight is inversely proportional to the variance of
the working dependent variable.

B.5.3 The Poisson Deviance

Let µ̂i denote the m.l.e. of µi under the model of interest and let µ̃i =
yi denote the m.l.e. under the saturated model. From first principles, the
deviance is

D = 2
∑

[yi log(yi)− yi − log(yi!)
−yi log(µ̂i) + µ̂i + log(yi!)].

Note that the terms on yi! cancel out. Collecting terms on yi we have

D = 2
∑

[yi log(
yi

µ̂i
)− (yi − µ̂i)]. (B.25)

The similarity of the Poisson and Binomial deviances should not go un-
noticed. Note that the first term in the Poisson deviance has the form

D = 2
∑

oi log(
oi

ei
),

which is identical to the Binomial deviance. The second term is usually zero.
To see this point, note that for a canonical link the score is

∂ log L

∂β
= X′(y− µ),

and setting this to zero leads to the estimating equations

X′y = X′µ̂.

In words, maximum likelihood estimation for Poisson log-linear models—and
more generally for any generalized linear model with canonical link—requires
equating certain functions of the m.l.e.’s (namely X′µ̂) to the same functions
of the data (namely X′y). If the model has a constant, one column of X
will consist of ones and therefore one of the estimating equations will be∑

yi =
∑

µ̂i or
∑

(yi − µ̂i) = 0,
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so the last term in the Poisson deviance is zero. This result is the basis
of an alternative algorithm for computing the m.l.e.’s known as “iterative
proportional fitting”, see Bishop et al. (1975) for a description.

The Poisson deviance has an asymptotic chi-squared distribution as n →
∞ with the number of parameters p remaining fixed, and can be used as a
goodness of fit test. Differences between Poisson deviances for nested models
(i.e. the log of the likelihood ratio test criterion) have asymptotic chi-squared
distributions under the usual regularity conditions.


