
✬
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Part III:

Linear mixed effects models
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Dental growth data
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• One possible scientific goal is to estimate and formally compare the average

growth trajectory between males and females

160 BIO 245, Spring 2019



✬

✫

✩

✪

• In Part II we considered two-stage least squares as one possible analysis

strategy:

(1) estimate the growth trajectory for each child:

Yk = Zkβk + ǫk

∗ child-specific regression parameters, βk

∗ ǫk are observation-specific random variations around each subjects’

underlying growth curve

∗ assumed to be i.i.d with mean 0 and variance σ2
k

(2) consider differences in the child-specific coefficients between males and

females

βk = Wkβ + γk

∗ β characterizes the mean growth curve in the population (of children)

∗ γk are child-specific deviations around the population growth curve

∗ assumed to be i.i.d with mean 0 and variance-covariance matrix G
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✫

✩

✪

• Results:

Fitted lines
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> summary(lm(beta1 ~ gender, data=betaMat))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1591 0.2280 0.698 0.492

gender 0.3205 0.1380 2.322 0.029 *

...
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✬

✫

✩

✪

Issues

• The design matrix is constrained at each stage of the analysis

⋆ stage 1 is restricted to within-subject covariates

⋆ stage 2 is restricted to between-subject covariates

• Information is lost by having summarized the response vector for subject k at

stage 1

• Differential uncertainty in the β̂k is not accounted for at stage 2

⋆ estimates, not the ‘true’ βk

⋆ uncertainty depends on nk and when the observations are collected

• The fact that observations are correlated is ignored

• All of these are key motivators for combining stages 1 and 2 into a single

model formulation
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✫

✩

✪

Linear mixed effects models

Basic idea

• Assume that each cluster has a regression model characterized by

cluster-specific regression parameters

• Structure the cluster-specific regressions across the population of clusters via

a series of

⋆ p fixed effects parameters that are common to all clusters in the

population

⋆ q random effects parameters that permit cluster-specific perturbations

• As we will see, both sets of parameters allow for differences in the

regressions across subjects
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✫

✩

✪

Notation

Yk = (Yk1, Yk2, . . . , Yknk
)T Response vector

β = (β1, β2, . . . , βp)
T Fixed effects

Xki = (Xki,1, Xki,2, . . . , Xki,p)

Xk = (Xk1, Xk2, . . . , Xknk
)T Design matrix for the fixed effects

⋆ nk × p

γk = (γk1, γk2, . . . , γkq)
T Random effects

Zki = (Zki,1, Zki,2, . . . , Zki,q)

Zk = (Zk1, Zk2, . . . , Zknk
)T Design matrix for the random effects

⋆ nk × q

ǫk = (ǫk1, ǫk2, . . . , ǫknk
)T Residual error terms
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✫

✩

✪

Definition

• By a linear mixed effects model, we mean a statistical model with the

following assumptions/components:

⋆ model for the response of the kth cluster, given the fixed and random

effects:

Yk = Xkβ + Zkγk + ǫk

⋆ model for the random effects and residual error:

E[γk] = 0 Cov[γk] = G(α)

E[ǫk] = 0 Cov[ǫk] = Rk(α)

Cov[γk, ǫk] = 0

∗ α referred to as covariance parameters

⋆ responses across clusters are independent of eachother
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✬

✫

✩

✪

• Note, this specification defines a marginal linear model:

E[Yk| Xk] = Eγ [EY [Yk| Xk, γk]]

= Eγ [Xkβ + Zkγk]

= Xkβ

≡ µk(β)

Cov[Yk| Xk] = Covγ [EY [Yk| Xk, γk]] + Eγ [CovY [Yk| Xk, γk]]

= Covγ [Xkβ + Zkγk] + Eγ [Rk(α)]

= ZkG(α)ZT
k + Rk(α)

≡ Σk(α)

Cov[Yk,Y k′ ] = 0

• In principle, therefore, we could use the methods developed in Part II to

estimate components of this model

167 BIO 245, Spring 2019



✬

✫

✩

✪

• From the expression for Σ(α), we can see that G(α) and Rk(α) jointly

characterize variation in the observed responses around the population mean

induced by β

Σk(α) = ZkG(α)ZT
k + Rk(α)

⋆ G(α) is a q × q matrix that quantifies random variation in the

trajectories across clusters

⋆ Rk(α) is a nk × nk matrix that quantifies random variation within

subjects
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✬

✫

✩

✪

Interpretation

• Consider the interpretation of β in:

Yk = Xkβ + Zkγk + ǫk

• Following standard principles, the components of β correspond to differences

in the mean response between specific populations

⋆ determined by the specific covariate under consideration

⋆ require ‘holding other terms constant’, including the random effects

⋆ interpretation is therefore conditional on the random effect

• Since the γk are continuous, in theory they are unique to each cluster

⋆ interpretation of β is therefore cluster-specific

• Some folks find this unappealing

⋆ simultaneously thinking about averages and yet we are conditioning on a

specific cluster
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✫

✩

✪

• Recall, however, the induced marginal model:

E[Yk| Xk] = Xkβ

⋆ the interpretation of β in this model does not require conditioning on the

subject

⋆ interpretation is therefore marginal with respect to cluster membership

⋆ more in line with our ‘usual’ interpretation of regression parameters

• The main point here is that despite the model being conditionally specified,

since the ‘true’ conditional and marginal parameters (i.e. the regression

coefficients) are the same numerically one can interpret results from a linear

mixed effects model as pertaining to marginal associations

⋆ relevant key question becomes how do you estimate β as well as perform

inference?
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✫

✩

✪

Q: What about the interpretation of the random effects?

⋆ often interpreted as latent characteristics that are specific to the subject

⋆ represent the collective impact of factors relevant to the response but not

included in the model

• Need to be careful, however, not to interpret their inclusion as ‘adjusting’ for

unmeasured confounding
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✬

✫

✩

✪

Special case #1: Random intercepts model

• Arguably the simplest mixed effects model is one in which a single random

intercept is introduced:

Yki = XT
kiβ + γ0k + ǫki

⋆ γ0k is a cluster-specific deviation around the population intercept, β0

⋆ assume E[γ0k] = 0 and V[γ0k] = σ2
γ

⋆ assume E[ǫki] = 0 and V[ǫki] = σ2
ǫ

• Consider the induced marginal covariance, Σk, by considering two specific

study units:

Yki = XT
kiβ + γ0k + ǫki

Ykj = XT
kjβ + γ0k + ǫkj

⋆ notice how the two observations ‘share’ the same value of γ0k
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✫

✩

✪

• We then have:

V[Yki] = Vγ [EY [Yki| γ0k]] + Eγ [VY [Yki| γ0k]]

= σ2
γ + σ2

ǫ

Cov[Yki, Ykj ] = Covγ [EY [Yki| γ0k],EY [Ykj | γ0k]]

+ Eγ [CovY [Yki, Ykj | γ0k]]

= σ2
γ

so that for α = (σ2
γ , σ

2
ǫ ):

Σ(α) =




σ2
γ + σ2

ǫ σ2
γ . . . σ2

γ

σ2
γ σ2

γ + σ2
ǫ . . . σ2

γ

...
...

. . .
...

σ2
γ σ2

γ . . . σ2
γ + σ2

ǫ
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✬

✫

✩

✪

• Consequently, the induced marginal model has an exchangeable dependence

structure

• Notice that the correlation between two study units is:

Cor[Yki, Ykj ] =
σ2
γ

σ2
γ + σ2

ǫ

=
”Between”

”Between” + ”Within”
∈ [0, 1]

⋆ only positive correlation is entertained

⋆ degree of correlation depends on the interplay between the

‘between-cluster’ variation and the ‘within-cluster” variation in the

responses

⋆ if σ2
γ = 0 there is no correlation

⋆ if σ2
ǫ = 0 there is perfect (positive) correlation
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✫

✩
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• Visualization of K=10 clusters with nk=5:
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✫

✩

✪

Special case #2: Random intercepts/slopes model

• The random intercept model can be extended to permit the effects of select

covariates to vary across the clusters

• For example in a longitudinal study in which Tki is the timing of the ith

observation in the kth cluster, we might specify the model:

Yki = XT
kiβ + γ0k + Tkiγ1k + ǫki

⋆ γ0k is a cluster-specific deviation around the population intercept

⋆ γ1k is a cluster-specific deviation around the population slope for time

∗ assume Tki is an element of Xki

⋆ assume

Cov[γk] = G(α) =


 Σγ,00 Σγ,01

Σγ,01 Σγ,11




⋆ assume E[ǫki] = 0 and V[ǫki] = σ2
ǫ
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✬

✫

✩

✪

• Again consider the induced marginal covariance, Σk, by considering two

specific study units:

Yki = β0 + β1Tki + γ0k + γ1kTki + ǫki

Ykj = β0 + β1Tkj + γ0k + γ1kTkj + ǫkj

⋆ for simplicity, just have the intercept and a term for Tki in Xk

• We then have:

V[Yki] = Vγ [EY [Yki| γk]] + Eγ [VY [Yki| γk]]

= Σγ,00 + 2Σγ,01Tki + Σγ,11T
2
ki + σ2

ǫ

Cov[Yki, Ykj ] = Covγ [EY [Yki| γ],EY [Ykj | γk]]

+ Eγ [CovY [Yki, Ykj | γk]]

= Σγ,00 + Σγ,01(Tki + Tkj) + Σγ,11TkiTkj
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✬

✫

✩

✪

• In contrast to the exchangeable structure induced by the random intercepts

model, the random intercepts/slopes model permits:

⋆ heteroskedasticity across the study units within a cluster

⋆ covariance (correlation) to depend on the two study units under

consideration

• Note both of these ‘extensions’ are specific to the covariate whose slope is

permitted to vary across the clusters

• In principle, one could include any element of Xk in Zk depending on

⋆ what we believe about the structure of dependence

⋆ the scientific interest(s)
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✫

✩

✪

• Visualization of K=10 clusters with nk=5:
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✬

✫

✩

✪

Special case #3: Random intercepts/serial dependence model

• The two special cases we’ve seen so far build flexibility in the first

component of:

Cov[Yk| Xk] = Σk(α)

= ZkG(α)ZT
k︸ ︷︷ ︸

Random effects

+ Rk(α)︸ ︷︷ ︸
Residual error

⋆ i.e. solely via the random effects

• An alternative strategy to introducing flexibility is to explicitly model the

correlation structure in the R(α)

⋆ i.e. move beyond

Rk(α) = σ2
ǫ Ink

and permit the ǫki to be correlated
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✫

✩

✪

• In a longitudinal study, one could do this by postulating that the residual

error terms arise, in part, due to some (latent) stochastic process

⋆ introduces serial dependence

• For example, the random intercepts/serial dependence model:

Yki = XT
kiβ + γ0k + Wk(Tki) + ǫ∗ki

⋆ γ0k is a cluster-specific random intercept

⋆ assume E[γ0k] = 0 and V[γ0k] = σ2
γ

⋆ Wk(Tki) is a serial dependence term

⋆ assume E[ǫ∗ki] = 0 and V[ǫ∗ki] = σ2
ǫ∗

• Assume the stochastic process Wk(·) is mean zero and is characterized by its

covariance function:

Cov[Wk(Tki), Wk(Tkj)] = σ2
W ρ(Uk,ij)

where Uk,ij = |Tki − Tkj |
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✬

✫

✩

✪

• Note, the ǫ∗ki terms in this model don’t have the same interpretation as in

the two previous models

⋆ capture variation in the error terms beyond that explained by Wk(·)

• Under this model, assuming independence between γ0k and Wk(·), for two

specific study units

Yki = β0 + β1Tki + γ0k + Wk(Tki) + ǫ∗ki

Ykj = β0 + β1Tkj + γ0k + Wk(Tkj) + ǫ∗kj

we have:

V[Yki] = Vγ [EY [Yki| γ0k]] + Eγ [VY [Yki| γ0k]]

= σ2
γ + σ2

W + σ2
ǫ∗

Cov[Yki, Ykj ] = Covγ [EY [Yki| γ0k],EY [Ykj | γ0k]]

+ Eγ [CovY [Yki, Ykj | γ0k]]

= σ2
γ + σ2

W ρ(Uk,ij)
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✫

✩

✪

• Notice that the correlation between two study units is:

Cor[Yki, Ykj ] =
σ2
γ + σ2

W ρ(Uk,ij)

σ2
γ + σ2

W + σ2
ǫ∗

• Specific examples for the correlation function include:

ρ(Uk,ij) = ρUkij auto-regressive model

ρ(Uk,ij) = exp{−Ukij/range} exponential spatial correlation
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✫

✩

✪

• Visualization of K=10 clusters with nk=5 based on an auto-regressive

correlation function for Wk(·):
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✪

Comment

• The random intercepts/slopes and the random intercepts/serial dependence

models both structure Σk(α) such that correlation among study units

depends, in part, on the timing of their measurement

• One way of thinking how to distinguish between the two models is that the:

⋆ random intercepts/slopes model structures dependence globally

⋆ random intercepts/serial dependence structures dependence locally
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✫

✩

✪

Estimation/inference

• Model components:

⋆ response of the kth cluster, given the fixed and random effects:

Yk = Xkβ + Zkγk + ǫk

⋆ random effects and residual error:

E[γk] = 0 Cov[γk] = G(α)

E[ǫk] = 0 Cov[ǫk] = Rk(α)

Cov[γk, ǫk] = 0

⋆ responses across clusters are independent of eachother

• If we are to proceed on the basis of likelihood-based estimation/inference we

need to specify a complete probability distribution for the data
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✫

✩

✪

The marginalized likelihood

• The most common way forward is to assume that and that

γk ∼ MVNq(0,G(α))

ǫk ∼ MVNnk
(0,Rk(α))

γk ⊥⊥ ǫk

• Given these assumptions, we can write down the marginal distribution of the

response for the kth cluster as:

fY (Yk| β,α) =

∫
f(Yk,γk|β,α)∂γk

=

∫
fY |γ(Yk| γk,β,α)fγ(γk| α)∂γk

⋆ marginal with respect to the random effects

⋆ a convolution of two multivariate Normal distributions
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✫

✩

✪

• Since the convolution of two Normal distributions is itself a Normal

distribution, and using results we derived on slide 167, we can write that:

Yk| β,α ∼ MVNnk
(Xkβ, Σk(α))

where Σk(α) = ZkG(α)ZT
k +Rk(α)

• Use this as a basis for an intergated or marginal likelihood that can be used

to perform estimation/inference with respect to (β,α):

L(β,α) =
K∏

k=1

fY (Yk| β,α)

⋆ assume that contributions from different clusters are independent

• From this, the log-likelihood is proportional to:

ℓ(β,α) ∝

K∑

k=1

log |Σk(α)| +

K∑

k=1

(Yk −Xkβ)
T
Σk(α)−1(Yk −Xkβ)
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✫

✩

✪

ML estimation of β

• Differentiating with respect to β yields the score:

Uβ(β,α) =
∂

∂β
ℓ(β,α) =

K∑

k=1

XT
k Σk(α)−1(Yk −Xkβ)

which yields the familiar MLE for β given α:

β̂(α) =

(
K∑

k=1

XT
k Σk(α)−1Xk

)−1( K∑

k=1

XT
k Σk(α)−1Yk

)

• The covariance of β̂(α) is based on the inverse of the Fisher information

matrix:

Iβ(β,α) = −E

[
∂2

∂β∂βT
ℓ(β,α)

]
=

K∑

k=1

XT
k Σk(α)−1Xk

⋆ denoted this by A(α) when discussing least squares estimation
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✫

✩

✪

• Notice that the MLE is equivalent to the WLS estimator with W taken to

be Σk(α)−1

⋆ we could therefore use the theory of WLS to perform estimation/

inference for β

⋆ since β̂(α) is a linear combination of the Yk, we have:

β̂(α) ∼ MVNp(β, A(α)−1)

⋆ since α is unknown, we could plug-in any consistent estimator and appeal

to Slutsky’s Theorem to see that:

A(α̂)−1/2(β̂(α̂) − β) −→ MVNp(0, I)

as K −→ ∞

⋆ note, it is not sufficient for nk −→ ∞ for fixed K
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✫

✩

✪

ML estimation of α

• Differentiating the log-likelihood with respect to α yields:

Uα(β,α) =
∂

∂α
ℓ(β,α)

=

K∑

k=1

[
(Yk −Xkβ)

T
Σk(α)−1 ∂Σk

∂α
Σk(α)−1(Yk −Xkβ)

− trace

(
Σ

−1
k

∂Σk

∂α

)]

• In general one won’t be able to solve Uα(β,α) = 0 analytically

• However one proceeds, the solution α̂ must satisfy the constraint that the

resulting covariance matrix Σ(α̂) is positive definite

⋆ several computation methods for parameterizing Σ(α) so that this

constraint is satisfied

⋆ e.g. Cholesky decomposition
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✫

✩

✪

REML estimation

• Recall that, in general, the MLE for variance components in a multivariate

Normal exhibit small sample bias

⋆ intuition is that the standard ML estimator doesn’t acknowledge the fact

that the mean (i.e. β) is estimated

⋆ implications for inference in small samples

• When considering estimation/inference for general linear models for

dependent data we derived the REML estimator as an alternative

• REML can also be used here

• Operationally, the strategy involves the use of the linear transformation:

Y ⇒ (Z, β̂)

where Z = BTY with B the N × (N − p) matrix defined by the

requirements that BBT = A and BTB = I.
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✫

✩

✪

• Exploiting the facts that E[Z] = 0 and Cov[Z, β̂] = 0, the pdf of Z,

expressed as a function of Y , is proportional to:

fY (Y )

f(β̂)
= (2π)−(N−p)/2|Σ(α)|−1/2|XT

Σ(α)−1X|−1/2

× exp

{
−
1

2
(Y −Xβ̂)TΣ(α)−1(Y −Xβ̂)

}

• The REML estimator of Σ, therefore, maximizes the so-called restricted

log-likelihood :

ℓ∗(α) ∝ − log |Σ| − log |XT
Σ(α)−1X|

− (Y −Xβ̂)TΣ(α)−1(Y −Xβ̂)
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✫

✩

✪

Inference

• From an inferential perspective, one might be interested in answering

questions regarding the mean model and/or the dependence model

• Mean model:

⋆ formally evaluate the association between some exposure of interest and

the response

⋆ compare competing specifications of some association

⋆ investigate potential effect modification

• Dependence model:

⋆ explain the nature of random variation in the data

⋆ valid inference for the fixed effects requires a ‘correct’ structure for Σk(α)

⋆ avoid over-parameterization which can lead to inefficient inference for the

fixed effects
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✫

✩

✪

Inference for the mean model

• Consider testing the fixed effects in nested linear mixed models:

H0 : β =


 β1

0


 versus H1 : β =


 β1

β2




• Usual Wald test will be valid, regardless of whether ML or REML was used

• If ML was used, one could also use a likelihood ratio test

• If REML was used, a likelihood ratio test will not be valid

⋆ Xkβ under H0 is not the same as Xkβ under H1

⋆ correspondingly different Z = BTY under H0 and H1

⋆ REML likelihoods are based on different sets of observations

⋆ differences in REML deviances are not meaningful
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✬

✫

✩

✪

Inference for the dependence structure

• Consider testing whether the random slopes in a random intercepts/slopes

model are ‘necessary’

⋆ i.e. compare the fit based on random intercepts/slopes model:

Yki = XT
kiβ + γ0k + Tkiγ1k + ǫki,

to that based on the random intercepts model:

Yki = XT
kiβ + γ0k + ǫki

• Recall the covariance structure for the random intercepts and slopes:

Cov[γk] = G(α) =


 Σγ,00 Σγ,01

Σγ,01 Σγ,11
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✬

✫

✩

✪

• We can therefore structure the hypotheses for this question as:

H0 : G(α) =


 Σγ,00 0

0 0




versus

H1 : G(α) =


 Σγ,00 Σγ,01

Σγ,01 Σγ,11




• Notice that under the null, Σγ,11 = 0

⋆ G(α) under H0 is the boundary of the parameter space defined by the

alternative

⋆ violation of a standard assumption used to establish the (asymptotic) χ2

distribution of the likelihood ratio test statistic
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✬

✫

✩

✪

• In general, when testing variance components, the asymptotic sampling

distribution of the LRT statistic is a mixture of χ2 distributions

⋆ nature of the mixture depends on the hypotheses one is testing

• For H0 and H1 above, the correct sampling distribution is a 50:50 mixture of

a χ2
2 distribution and a χ2

1 distribution

LRT statistic
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✬

✫

✩

✪

• See that the näıve use of a χ2
2 distribution will lead to overly conservative

inference

⋆ for a given value of the test statistic, the p-value based on a χ2
2

distribution will be bigger than the p-value based on the correct mixture

⋆ fail to reject H0 when one should reject it

⋆ leads to an incorrect over-simplification of the model for the dependence

structure

• Additional details can be found in:

⋆ Self and Liang (JASA, 1987)

⋆ Stram and Lee (Biometrics, 1994)

• Finally, note that, in contrast to likelihood-based inference for β, one can

perform valid likelihood-based inference for α whether ML or REML is used

⋆ Xkβ is the same under H0 and H1

⋆ REML likelihoods are based on the same set of observations
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✬

✫

✩

✪

Empirical Bayes

• So far estimation/inference for (β, α) has been based on a marginalized

likelihood in which the random effects have been integrated out

• In some settings, one might be interested in the random effects themselves

⋆ visualization of heterogeneity across clusters

⋆ characterization of cluster-specific associations

⋆ profiling and ranking

• If (β, α) were known, one could proceed within the Bayesian paradigm for

the ‘unknown’ γk:

⋆ take the conditional distribution of the data as the ‘likelihood’

⋆ take the distributional assumptions for the random effects as the ‘prior’

⋆ the posterior of γk given the data Yk:

π(γk| Yk,β,α) ∝ L(γk;Yk,β,α) × π(γk| α)

200 BIO 245, Spring 2019



✬

✫

✩

✪

• As an ‘estimate’ of γk, one might compute and report the mean of the

posterior distribution:

γ̃k = E[γk| Yk,β,α]

• For a given form of this expectation, one could plug in estimates of (β, α)

based on ML or REML

• Referred to as the empirical Bayes estimator

⋆ empirical in the sense that the data was used to inform the ‘prior’

⋆ i.e. we plugged α̂ into π(γk| α)
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✬

✫

✩

✪

Empirical Bayes in a simple setting

• Consider the simple setting in which there are no covariates:

Yki = β0k + ǫki

⋆ β0k ∼ Normal(β0, τ
2)

⋆ ǫki ∼ Normal(0, σ2)

• The induced marginal distribution of the response vector is:




Yk1

Yk2

...

Yknk




∼ MVNnk







β0

β0

...

β0



,




τ2 + σ2 τ2 . . . τ2

τ2 τ2 + σ2 . . . τ2

...
...

. . .
...

τ2 τ2 . . . τ2 + σ2







202 BIO 245, Spring 2019



✬

✫

✩

✪

• It is relatively straightforward to show that the ML estimator of β0, the

population mean, is simply the WLS estimator:

β̂0 =

∑
k wkY k∑
k wk

where wk = τ2 + σ2/nk

⋆ obtain estimates of σ2 and τ2 via ML or REML

• Now consider the joint distribution of the cluster-specific mean, Y k and β0k:


 Y k

β0k


 ∼ MVN2




 β0

β0


 ,


 τ2 + σ2/nk τ2

τ2 τ2
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✬

✫

✩

✪

• The corresponding conditional distribution of β0k| Y k is a Normal with mean

E[β0k| Y k, β0, σ
2, τ2] = β0 +

τ2

τ2 + σ2/nk
(Y k − β0)

=
σ2/nk

τ2 + σ2/nk
β0 +

τ2

τ2 + σ2/nk
Y k

⋆ weighted average of the population mean and the cluster-specific mean of

the responses

⋆ as nk gets large, more weight is attached to the sample mean

⋆ also depends on the relative degree of between- versus within-cluster

variation

• Operationally one would plug-in the estimates of β0, σ
2 and τ2, we get the

empirical Bayes estimate of β0k:

β̃0k =
σ̂2/nk

τ̂2 + σ̂2/nk
β̂0 +

τ̂2

τ̂2 + σ̂2/nk
Y k
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✬

✫

✩

✪

Empirical Bayes for linear mixed effects models

• Now consider the linear mixed effects model:

Yk = Xkβ + Zkγk + ǫk

γk ∼ MVNq(0,G(α))

ǫk ∼ MVNnk
(0,Rk(α))

γk ⊥⊥ ǫk

for which the induced marginal distribution of Yk is a multivariate Normal:

Yk ∼ MVNnk
(Xkβ, Σk(α))

where Σk(α) = ZkG(α)ZT
k +Rk(α)

• Suppose we obtain estimates of (β, α) via ML or REML
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✬

✫

✩

✪

• Now consider the (cluster-specific) joint distribution of Yk and γk:


 Yk

γk


 ∼ MVNnk+q




 Xkβ

0


 ,


 Σk(α) ZkG(α)

G(α)ZT
k G(α)






since

Cov[Yk, γk] = Cov[Xkβ + Zkγk + ǫk, γk]

= Cov[Xkβ, γk] + Cov[Zkγk, γk] + Cov[ǫk, γk]

= 0 + ZkCov[γk, γk] + 0

= ZkG(α)

• The induced conditional distribution of γk| Yk is:

γk| Yk ∼ MVNq(G(α)ZT
k Σk(α)−1(Yk −Xkβ), Σ

∗

k(α))

where Σ
∗

k(α) = G(α)−G(α)ZT
k Σk(α)−1ZkG(α)
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✬

✫

✩

✪

• Consequently, the empirical Bayes estimator of γk is:

γ̃k = G(α̂)ZT
k Σk(α̂)−1(Yk −Xkβ̂)

⋆ simply plug in the estimates (ML or REML) of (β, α)

• Can also examine the fitted values of the response based on the empirical

Bayes estimator:

Ŷ k = Xkβ̂ + Zkγ̃k

= Xkβ̂ + Zk

[
G(α̂)ZT

k Σk(α̂)−1(Yk −Xkβ̂)
]

= [Ink
−ZkG(α̂)ZT

k Σk(α̂)−1]Xkβ̂ + ZkG(α̂)ZT
k Σk(α̂)−1Yk

⋆ weighted average of the estimated population profile, Xkβ̂, and the

observed data, Yk.
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✬

✫

✩

✪

Fitting models in R

• There are many ways of fitting linear mixed effects models in R

• Two functions/packages written by Doug Bates and colleagues are:

⋆ lme() function in the nlme package

⋆ lmer() function in the lme4 package

• Unfortunately, no single function/package has the functionality to fit all

forms of a linear mixed effects model that one could be interested in

⋆ e.g. lme() permits direct specification of structure for the off-diagonal

elements of Rk(α), whereas lmer() does not (at least as far as I can

tell)

⋆ e.g. lmer() permits non-nested levels of clustering, whereas lme() does

not (at least as far as I can tell)
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✬

✫

✩

✪

• The basic call to lme() is has the following elements:

fixed Specification for the regression model, Xkβ

random Specification for the random effects model, Zkγk

correlation Specification for serial dependence in Rk(α)

weights Specification for heteroskedasticity in Rk(α)

method Indicator of whether ML or REML is used

> ##

> ?lme ## Help on specifying a linear mixed model

> ?corClasses ## Help on specifying serial dependence

> ?varClasses ## Help on specifying heteroskedasticity

• Additional resources:

⋆ Pinheiro J. and Bates D. Mixed-Effects Models in S and S-PLUS (2006)

⋆ Galecki A. and Tomasz B. Linear mixed-effects models using R: A

step-by-step approach (2013).
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✬

✫

✩

✪

Dental growth data

• Fit a series of models with the same mean structure:

E[Yki] = β0 + β1A
∗

ki + β1Gk + β3A
∗

kiGk

⋆ where A∗

ki = Aki − 8

• Consider a range of specifications for dependence:

Σk(α) = ZkG(α)ZT
k +Rk(α)

> ##

> load("Growth.RData")

> growth$ageStar <- growth$age - 8

> library(nlme)

>

> ## Naive - independent errors

> ##

> fit0.ML <- glm(length ~ ageStar * gender, data=growth, family=gaussian)
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✬

✫

✩

✪

> ## Random intercepts + independent errors

> ##

> fit1.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ data=growth, method="ML")

>

> ## Independent random intercepts/slopes + independent errors

> ## * two subject-specific random effects are independent

> ##

> fit2.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ ageStar | id, pdClass="pdDiag"),

+ data=growth, method="ML")

>

> ## Correlated random intercepts/slopes + independent errors

> ## * two subject-specific random effects are correlated

> ##

> fit3.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ ageStar | id),

+ data=growth, method="ML")
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✬

✫

✩

✪

> ## Random intercepts + auto-regressive errors

> ##

> fit4.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ correlation=corAR1(form= ~ ageStar| id),

+ data=growth, method="ML")

>

> ## Random intercepts + exponential spatial errors

> ##

> fit5.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ correlation=corExp(form= ~ ageStar| id),

+ data=growth, method="ML")

>

> ## Random intercepts + (exponential spatial with a ‘nugget’)

> ## - see the help file for corExp()

> ##

> fit6.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ correlation=corExp(form= ~ ageStar| id, nugget=TRUE),

+ data=growth, method="ML")
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✬

✫

✩

✪

> ## Random intercepts + independent errors

> ## * heteroskedasticity across age

> ##

> fit7.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ weights=varIdent(form= ~1 | ageStar),

+ data=growth, method="ML")

>

> ## Random intercepts + independent errors

> ## * heteroskedasticity across gender

> ##

> fit8.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ weights=varIdent(form= ~1 | gender),

+ data=growth, method="ML")
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✬

✫

✩

✪

• Output:

> ##

> summary(fit0.ML)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.2091 0.5700 37.207 < 2e-16 ***

ageStar 0.4795 0.1523 3.148 0.00217 **

gendermale 1.4909 0.7505 1.987 0.04970 *

ageStar:gendermale 0.3205 0.2006 1.598 0.11326

...

(Dispersion parameter for gaussian family taken to be 5.105977)

Null deviance: 905.84 on 103 degrees of freedom

Residual deviance: 510.60 on 100 degrees of freedom

AIC: 470.62

...

> sqrt(summary(fit0.ML)$dispersion)

[1] 2.259641
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✬

✫

✩

✪

> ## Random intercepts + independent errors

> ##

> summary(fit1.ML)

Linear mixed-effects model fit by maximum likelihood

Data: growth

AIC BIC logLik

426.1665 442.0329 -207.0833

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.731043 1.383142

Fixed effects: length ~ ageStar * gender

Value Std.Error DF t-value p-value

(Intercept) 21.209091 0.6402482 76 33.12636 0.0000

ageStar 0.479545 0.0950982 76 5.04264 0.0000

gendermale 1.490909 0.8429259 24 1.76873 0.0896

ageStar:gendermale 0.320455 0.1252026 76 2.55949 0.0125

...

Number of Observations: 104

Number of Groups: 26
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✬

✫

✩

✪

> ## Independent random intercepts/slopes + independent errors

> ##

> summary(fit2.ML)

...

Random effects:

Formula: ~ageStar | id

Structure: Diagonal

(Intercept) ageStar Residual

StdDev: 1.692609 0.142729 1.332001

...

>

> ## Correlated random intercepts/slopes + independent errors

> ##

> summary(fit3.ML)

...

Random effects:

Formula: ~ageStar | id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.7236512 (Intr)

ageStar 0.1543159 -0.093

Residual 1.3245101

....
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✬

✫

✩

✪

> ## Random intercepts + auto-regressive errors

> ##

> summary(fit4.ML)

...

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.731043 1.383142

Correlation Structure: ARMA(1,0)

Formula: ~ageStar | id

Parameter estimate(s):

Phi1

0

...
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✬

✫

✩

✪

> ## Random intercepts + exponential spatial errors

> ##

> summary(fit5.ML)

...

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.731043 1.383142

Correlation Structure: Exponential spatial correlation

Formula: ~ageStar | id

Parameter estimate(s):

range

0.1079813

...

>

> ## Correlation between two observation 1 time unit apart

> ##

> range <- 0.1079813

> exp(-1/range)

[1] 9.507362e-05
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✬

✫

✩

✪

> ## Random intercepts + (exponential spatial with a ‘nugget’)

> ##

> summary(fit6.ML)

...

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.731043 1.383142

Correlation Structure: Exponential spatial correlation

Formula: ~ageStar | id

Parameter estimate(s):

range nugget

0.11013210 0.09606834

...

>

> ## Correlation between two observation 1 time unit apart

> ##

> range <- 0.11013210

> nugget <- 0.09606834

> (1-nugget) * exp(-1/range)

[1] 0.0001029769
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✬

✫

✩

✪

> ## Random intercepts + independent errors

> ## * heteroskedasticity across age

> summary(fit7.ML)

...

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.722349 1.635319

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | ageStar

Parameter estimates:

0 2 4 6

1.0000000 0.7392948 0.9315600 0.6922482

...
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✬

✫

✩

✪

> ## Random intercepts + independent errors

> ## * heteroskedasticity across gender

> summary(fit8.ML)

...

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.766799 0.7694708

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | gender

Parameter estimates:

female male

1.000000 2.193266

...
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✬

✫

✩

✪

• Comparison of model fit:

Dependence model log-Like AIC

0. Independence -230.3115 470.6231

1. Random intercepts + inde. errors -207.0833 426.1665

2. Independent random intercepts/slopes + inde. errors -206.7674 427.5348

3. Correlated random intercepts/slopes + inde. errors -206.7540 429.5081

4. Random intercepts + AR errors -207.0833 428.1665

5. Random intercepts + ES errors -207.0833 428.1665

6. Random intercepts + (ES with a ‘nugget’) -207.0833 430.1665

7. Random intercepts + heteroske inde. errors (age) -206.0505 430.1009

8. Random intercepts + heteroske inde. errors (gender) -197.0882 408.1765

⋆ seems clear that model 8 provides the best fit (from among those

presented, at least)
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✬

✫

✩

✪

• Results for:

E[Yki] = β0 + β1A
∗

ki + β1Gk + β3A
∗

kiGk

Dependence Estimate Standard error

model β0 β1 β2 β3 β0 β1 β2 β3

0. 21.21 0.48 1.49 0.32 0.570 0.152 0.750 0.201

1. 21.21 0.48 1.49 0.32 0.640 0.095 0.843 0.125

2. 21.21 0.48 1.49 0.32 0.623 0.102 0.820 0.134

3. 21.21 0.48 1.49 0.32 0.630 0.103 0.830 0.135

4. 21.21 0.48 1.49 0.32 0.640 0.095 0.843 0.125

5. 21.21 0.48 1.49 0.32 0.640 0.095 0.843 0.125

6. 21.21 0.48 1.49 0.32 0.640 0.095 0.843 0.125

7. 21.22 0.48 1.37 0.35 0.650 0.092 0.855 0.122

8. 21.21 0.48 1.49 0.32 0.578 0.053 0.830 0.113

⋆ standard error estimates are notably smaller under model 8
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✬

✫

✩

✪

• Empirical Bayes estimates of the random effects estimates from a random

intercept/slopes model

⋆ compare estimates with those from K=26 separate regressions

Subject−specific intercepts

Fixed effects
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Subject−specific slopes

Fixed effects
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⋆ see structure imposed by the model
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✬

✫

✩

✪

• Finally consider the impact of using REML for model 8

>

> fit8.REML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ weights=varIdent(form= ~1 | gender),

+ data=growth, method="REML")

>

> summary(fit8.REML)

Linear mixed-effects model fit by REML

...

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.844801 0.7813232

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | gender

Parameter estimates:

female male

1.000000 2.185356

...
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✬

✫

✩

✪

ML REML

Est SE Est SE

Fixed effects

Intercept, β0 21.21 0.578 21.21 0.590

Main effect for age, β1 0.48 0.053 0.48 0.053

Main effect for gender, β2 1.49 0.830 1.49 0.843

Interaction, β3 0.32 0.113 0.32 0.112

Variance components

SD of random intercepts 1.767 1.845

SD for errors

females 0.769 0.781

males 1.688 1.707

⋆ differences don’t appear to be substantial
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✬

✫

✩

✪

MACS CD4+ cell count data

• Consider the mean model:

E[CD4ki] = β0 + β1timeki + β2ageki + β3smokerki

+ β4drugki + β5cesd-CSki + β5cesd-LOki

based on the following data manipulations:

> ##

> load("MACS.RData")

> macs$smoker <- as.numeric(macs$packs > 0)

> macs$age <- macs$age / 5

> macs$cesd <- (macs$cesd - 10) / 5

⋆ restricted to K=266 participants those who seroconverted with the ‘pre’

measurement no more than 6 months prior to seroconversion

⋆ cesd-CS and cesd-LO are the cross-sectional and longitudinal forms of

CESD we’ve considered previously
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✬

✫

✩

✪

• Fit seven of the models for the dependence structure considered for the

dental growth data

⋆ for simplicity do not consider heteroskedasticity

Dependence model log-Like AIC

0. Näıve independence -10,956 21,927

1. Random intercepts + inde. errors -10,705 21,428

2. Independent random intercepts/slopes + inde. errors -10,674 21,368

3. Correlated random intercepts/slopes + inde. errors -10,663 21,349

4. Random intercepts + AR errors -10,832 21,684

5. Random intercepts + ES errors -10,677 21,375

6. Random intercepts + (ES with a ‘nugget’) -10,667 21,357

⋆ indications that dependence models 3 and 6 provide the best fits to the

data
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✬

✫

✩

✪

> ## Correlated random intercepts/slopes + independent errors

> ##

> summary(fit3.ML)

...

Random effects:

Formula: ~time | id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 248.87779 (Intr)

time 82.82339 -0.446

Residual 215.70104

Fixed effects: list(my.form)

Value Std.Error DF t-value p-value

(Intercept) 794.3135 26.590386 1248 29.872208 0.0000

time -122.1458 7.453226 1248 -16.388309 0.0000

....

⋆ substantial variation in the random slopes relative to that in the random

intercepts and residual error

⋆ negative correlation between the random intercepts and slopes
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✬

✫

✩

✪

Subject−specific intercept
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⋆ vast majority of subject-specific slopes are negative

⋆ participants with higher initial CD4 count tend to have steeper declines

post-seroconversion
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✬

✫

✩

✪

> ## Random intercepts + (exponential spatial and independent measurement error)

> ##

> summary(fit6.ML)

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 156.79 297.0372

Correlation Structure: Exponential spatial correlation

Formula: ~time | id

Parameter estimate(s):

range nugget

2.534943 0.386866

...

>

> ## Correlation between two observation 1 time unit apart

> ##

> (1-nugget) * exp(-1/range)

[1] 0.4132684

• Fairly substantial correlation in the serial dependence term
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✬

✫

✩

✪

• Point estimates:

E[CD4ki] = β0 + β1timeki + β2ageki + β3smokerki

+ β4drugki + β5cesd-CSki + β5cesd-LOki

Dependence Int time age smoker drug cesd-CS cesd-LO

model

0. 720 -85 2 168 58 -8 17

1. 791 -104 -1 101 19 -8 18

2. 788 -121 4 106 28 -10 16

3. 794 -122 3 92 28 -7 16

4. 918 -134 7 100 20 -22 10

5. 797 -108 1 103 23 -7 13

6. 811 -112 1 97 26 -9 14
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✬

✫

✩

✪

• Standard error estimates:

E[CD4ki] = β0 + β1timeki + β2ageki + β3smokerki

+ β4drugki + β5cesd-CSki + β5cesd-LOki

Dependence Int time age smoker drug cesd-CS cesd-LO

model

0. 21.4 5.7 5.7 18.0 20.4 4.9 5.8

1. 26.1 4.7 10.4 23.9 21.1 8.0 5.3

2. 26.1 6.8 10.6 24.0 21.3 8.1 5.3

3. 26.6 7.5 10.3 23.9 21.0 7.9 5.2

4. 31.2 7.9 14.6 26.9 22.1 10.8 5.4

5. 26.6 5.7 10.5 24.3 21.2 8.0 5.3

6. 27.3 6.3 10.8 24.6 21.3 8.2 5.2
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✬

✫

✩

✪

Model diagnostics

• Since estimation/inference for linear mixed effects models is likelihood-based,

the validity of results relies on a series of assumptions:

⋆ correct specification of the mean model

⋆ correct specification of the dependence model

⋆ Normality of γk and ǫk

⋆ K is sufficiently ‘large’ for asymptotic results to apply

• Prior to formal modeling, one can (and should) perform an initial EDA to

examine possible errors in the data as well as to get insight into model

structure

• Once a model has been fit, the assumptions can be re-assessed using an

analysis of residuals and the empirical Bayes estimates of the random effects
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✬

✫

✩

✪

Residuals

• In mixed effects models, the notion of a ‘residual’ can be defined at a

number of different levels

⋆ marginal (population-level) residuals:

ek = Yk − Xkβ

⋆ stage-one (cluster-level) residuals:

ǫk = Yk − Xkβ − Zkγk

⋆ γk can also be viewed as form of stage two residual

∗ deviation around the population regression

• Estimates of these quantities can be obtained by plugging in β̂ and γ̃k:

êk = Yk − Xkβ̂

ǫ̂k = Yk − Xkβ̂ − Zkγ̃k
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✬

✫

✩

✪

Standardization

• The observed residuals arise from having fit a model and, therefore, should

exhibit variation-covariation in accordance with the structure of the model

⋆ e.g. if the model permits the residual error variance to differ by some

covariate, then the observed residuals will reflect this

• If the goal is to investigate the extent to which the model is ‘inadequate’, we

should acknowledge this phenomenon

• One way forward is to standardize (or normalize) the residuals

⋆ let LT
kLk be the Cholesky decomposition of Σk(α̂)

⋆ use Lk to form the standardized marginal residuals

ê
∗

k = L−1
k êk

= L−1
k (Yk − Xkβ̂)
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✬

✫

✩

✪

• If Σk(α) has been correctly specified then Cov[ê∗k] ≈ Ink

⋆ no mean-variance relationship in the variance components

⋆ no relationship between the residuals and any of the covariates

⋆ no residual correlation among observations within a cluster

• Note, as appropriate, one might also consider standardizing the stage one

residuals

ǫk = Yk − Xkβ − Zkγk

⋆ particularly useful for investigating residual (unaccounted) serial

dependence in the specification of Rk(α)
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✬

✫

✩

✪

Diagnostics

• Conventionally, folks tend to focus on the stage one residuals and the random

effects estimates when performing diagnostics for linear mixed models

⋆ patterns in the population residuals could result from inadequacy in the

model structure in various places

• Mean model:

⋆ plots of ǫ̂ki versus the columns of Xk to investigate whether the assumed

specification of Xkβ is adequate

⋆ plots of γ̃kq versus the columns of Xk to investigate whether the

assumed specification of Zkγk is adequate

• Note, if the residuals have been standardized, one should compare them with

the columns of Xk similarly standardized
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✬

✫

✩

✪

• Dependence model:

⋆ plot of ǫ̂ki versus the fitted values, µ̂ki = Xkβ̂ + Zkγ̃k, to see if there

is a residual mean-variance relationship

⋆ plot of ǫ̂ki versus lag(ǫ̂ki) to see if there is any residual serial dependence

• Normality:

⋆ standard approach is to present a Q-Q plot of the fitted residual versus

the expected normalized residuals from a Normal distribution

∗ stage one residuals, ǫ̂ki

∗ random effect estimates, γ̃k,j for j= 1, . . ., q

⋆ as appropriate, one can also examine scatter plots of the components of

γ̃k to assess joint Normality
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✬

✫

✩

✪

Dental growth data

• Recall the ‘best’ fitting model was model 8

⋆ random intercepts + heteroskedastic error terms by gender

• Present select diagnostics based on model 1:

⋆ random intercepts + homoskedastic independent error

>

> ## Random intercepts + independent errors

> ##

> fit1.ML <- lme(fixed=length ~ ageStar * gender,

+ random=reStruct(~ 1 | id),

+ data=growth, method="ML")

>

> epsHat <- resid(fit1.ML, type="normalized")

> gammaHat <- ranef(fit1.ML)[,1]
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✬

✫

✩

✪

• Investigate heteroskedasticity in the standardized stage 1 residuals:
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⋆ inconclusive evidence regarding heteroskedasticity by age

⋆ strong evidence of heteroskedasticity by gender
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✬

✫

✩

✪

• Compare residuals and lagged residuals to investigate potential serial

dependence:

⋆ only for observations at ages 10, 12 and 14

Lagged stage 1 residual
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⋆ indication of unaccounted for local correlation
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✬

✫

✩

✪

• Q-Q plots:

Stage 1 residuals

Theoretical quantiles
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Random intercepts
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⋆ looking for linearity between the theoretical and sample quantiles

⋆ some evidence of heavier-than-Normal tails in the stage 1 residuals

⋆ random intercepts seems fine

∗ tough to tell with only K=26 children
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✬

✫

✩

✪

Summary

• Goals:

⋆ perform estimation/inference for regression parameters from a model for

a continuous response while acknowledging within-cluster dependence

⋆ also perform estimation/inference for the dependence structure

⋆ estimate cluster-specific parameters/effects

• Approach:

⋆ combine fixed effects with random effects into a single model formulation:

Yk = Xkβ + Zkγk + ǫk

⋆ consider various strategies for structuring the model components so that

a range of dependence models can be entertained

∗ structure for Cov[γk] = G(α)

∗ structure for Cov[ǫk] = Rk(α)
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✬

✫

✩

✪

• Estimation/inference:

⋆ integrated likelihood for (β, α)

⋆ ML or REML

⋆ empirical Bayes for the cluster-specific random effects, γk

• Since estimation/inference is fully parametric, diagnostics for model

structure and assumptions are an important consideration

⋆ mean model

⋆ dependence model

⋆ distributional assumptions
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