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e That which 1§ commonly believed
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o Bayesian subjective interpretation
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From ideology to utility

» Until recently the debate was mainly philosophical. F methods
were much casier

» With improvements in MCMC, B methods have become more
feasible and surpass F methods for many complex problems
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R. A. Fisher’s clever idea

The Lady Tasting Tea and the p-value: a frequentist
basis for inference

In 1919, Dr. Muriel Bristol at Rothampsted Experimental
Station claimed she could tell whether the milk was poured in
first or the tea first.

» Imagine that she was offered 12 cups of tea in random order
prepared.milk first and 6tea, first
» She got 10 of the 12 right
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Rationale behind the p-value

How can we quantify the evidence that she can tell the
difference?

» Pretend that she can’t tell the difference: ‘null hypethiesis’ Hy
» The probability of getting 10 out 12 right is p(y|Hp) = 0.038961
» But the probability of any single outcome, even otle<Consistent

with Hg, might be very small and might say nothing against H|

» Fisher’s idea: use the tail probability, the probability of y as or
more extreme than the observed—vatuc oty

Gl 10k (7 = 12170
0.038961 + 0.001082

0.040043

p-value:

Pr (y™|Ho)



Proof by contradiction /implausibility

A implies B is improbable
/—-—_----""___-"'h___

Qherefore A is unlikely

Courtroom analogy: presumption of innocence

Con81der probability of data (evidence @

If evidence inconsistent with innocence, then reject innocence
and find guilt

Bl —

Contradiction

A implies not B
——

B true

is false




Sally Clark

Young lawyer, gives birth to first son in September 1996

son dies, apparently of SIDS, at 10 weeks

second son born a year later

dies, apparently of SIDS, at 8 weeks

only evidence of trauma consistent with resuscitation attempts
charged with two counts of murder

vV v v vV v Y



) Meadow

distinguished pediatrician
» as expert witness testifies:

> probability of one SIDS deai

> ‘if she’s innocent; the cha ! appening are 1 in 72
N

mi lion
onvicts Sally Clark of murder in November 1999

first appeal lost in October 200C
second app ceds and Saldly.Clark is released in January 2003
she dies in 2007 at the age of 42

vV v. v .Yy
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Proot beyond a reasonable doubt?

A very small value of the probability of innocence ‘given’ the
evidence?

Probability( Innocence | Evidence )?

What did Roy MeadowAearn from stats’

How to calculate:

@bﬂﬂzy( Evidence™ | Innoc@

the p-value, the probability of obtaining evidence
as or more contradictory assuming innocence.




The tundamental neurosis of statistics

» We really want p(f|y) but we’d have to accept p(6)
» So we give the world p(y™16))

» Most people quietly think it’s a proxy for p(0|y)
» if not, what in the world could it be?

» (igerenzer:

» the confusion created by this unresolved conflict among
statisticians, which is both suppressed and inherent in statistics
textbooks, leads to a systemic neurosis in science for which the
ritual of NHST is a form of conflict resolution — like compulsive
hand washing — which makes it resistant to logical arguments

» One is most strongly committed to the beliefs one does not
understand






If p-values are so bad,

why do we still use
them?



e For many common problems they are consistent
with Bayesian answers
O see Fiducial and Structural Inference
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e You don’t need to justify a choice of priors




For many common problems they are consistent
with Bayesian answers

o see Fiducial and Structural Inference
Bayesian Inference except for very simple
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If you feel puzzled, you are not alone: (Reid, 2017)

SIX MONTHS LATER:
OUR FIELD HAS BEEN STRUGGLE NO MORE! 1

STRUGGLING WITH THIS T™ HERE TO SOLVE. WO, THIS PROBLEM
PROBLEM FOR YEARS. IT \JITH ALGORITHIMS! 15 REALLY HARD.

Rinatier e

From a 1996 interview:

Nancy Reid: Why 1s conditional inference so hard?

Sir David Cox: I expect we’re all missing something but I
don’t know what it is.
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‘Frequentist workflow

Step 1: Step 2:

Formulate hypotheses and Model: p(y|6)

plan comparisons and

estimates Y1 Y2 sum
01 | p(y1l01) p(y2/61) 1
02 | p(y1l02) p(y2]02) 1
Os | p(y1]03) p(y2|63) 1

Step 3: Step 4:

1. Observe y Insist how important it is that

2. Do something clever with your results not be confused

p(y|0) with p(8|y) because that would

3. Estimate 6 in a way that require a subjective prior and

works well on average — i.e. if you believe that science should

you repeat the process and get be objective.

more y’s



Bayesian workflow

Step 1: Prior: p(0)
Formulate a prior on some

basis
04 p(61)
62 p(62)
03 p(63)
sum | 1(or oo!)

Step 3: Observed joint:

Observe Yops

P(Yobs, €) = p(8) X p(Yobs|0)

Step 2: Model: p(y|0)

04 P Yobss 01)

02 P (Yobs; 02)

03 P (Yobs, 03)
sum P(Yobs) O € OF 0O

Y1 Y2 SUIN
01 | p(yil61) p(y2161) 1
O | p(y1]|02) p(y2102) 1
03 | p(y1l03) p(y1]63) 1

Step 4: Posterior:

P(O1Yobs) = D(Yobs; 0)/P(Yobs)

91 P (91 yobs)

0> P (02|Yobs)

03 P (03]Yobs)
sum ler
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If you’ve walked downhill, you need to toss a biased coin with:

p ( - | Y)
b (glast | Y)

Usually, it's very hard to compute the numerator and the denominator of this ratio.

Pr(Heads) =

However, the ratio itself is, for many models, a relative cinch:

p(gnew|Y) _ p(9n8w|Y)/p(Y) _ p(Ya Gnew) 5 p(gne‘w)
p(glast IY) p(glast | Y) /p(Y) p(Ya glast ) p(glast )

Which is just the likelihood ratio times the prior ratio.

Pr(Heads) =

The more you’ve gone down, the lower the probability of a Head.

« |f you get a Head, plant a stake at your new position.
« If you get a Tail, step back to the last position and plant a second stake there.
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Figure 7: Samples generated b); random-walk Metropolis, Gibbs sampling, and NUTS. The
plots compare 1,000 independent draws from a highly correlated 250-dimensi
distribution (right) with 1,000,000 samples (thinned to 1,000 samples for display)
generated by random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000
samples for display) generated by Gibbs sampling (second from left), and 1,000
samples generated by NUTS (second from right). Only the first two dimensions
are shown here.
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INTERFACES DOCS ISSUES EVENTS COMMUNITY CITE TEAM DEVELOP SHOP SUPPORT

Stan

Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the

social, biological, and physical sciences, engineering, and business.
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Defining a model 1n Stan

data {
int N; // number of observations
int P; // number of columns of X matrix (including intercept)
matrix[N,P] X; // X matrix including intercept
vector[N] y; // response

}

parameters {
vector[P] beta; // default uniform prior if nothing specied in model
real <lower=0> sigma; // uniform on positive reals

}

model {

y ~ normal( X * beta, sigma ); // note that * is matrix mult.
// For elementwise multiplication use .*



Data

head( Xmat <- model.matrix(Health ~ Weight + Height, dd) )

(Intercept) Weight Height
.3355 ©.6008
.6890 0.9449
.6980 0.6150
.7617 1.2340
.8910 0.7870
.9330 0.9150

Ul A W N
N
©O 0O 0 ® ® ®

dat_list <- list(N
X

nrow(Xmat), P = ncol(Xmat),
Xmat, y = dd$Health)



$N

[1] 16
$P
[1] 3
$X

(Intercept) Weight Height
1 1 ©.3355 0.6008
2 1 ©.6890 0.9440
3 1 ©.6980 0.6150
- 1 ©.7617 1.2340
5 1 ©.89190 0.7870
6 1 ©.9330 0.9150
& 1 ©.9430 1.0490
8 1 1.0060 1.1840
9 1 1.0200 ©.7370
10 1 1.2150 1.0770
11 1 1.2230 1.1280
12 1 1.2360 1.5000
13 1 1.3530 1.53106
14 1 1.3770 1.1500
15 1 2.0734 1.9340
18 1 1.9000 ©0.2000
attr(,"assign")
[1] 0 1 2
$y

[1] 1.2806 1.208 1.036 1.395 0.912 1.175 1.237 1.048 1.003 ©.943 0.912
[12] 1.311 1.411 ©.920 1.073 1.500



fit_stan <- sampling(reg model dso, dat list)

— it stan
w Snip |

Inference for Stan model: 5a6361673e39acd797b5518d36e20615.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 507% 75% 97.5% n_eff Rhat

beta[l] 1.16 0.60 6.20 ©.77 1.3 1.16 1.29 1.55 2035 1
beta[2] ©.04 ©.00 0.15 -0.26 -0.06 ©0.04 ©0.14 ©.34 1980 1
beta[3] -0.65 ©.00 0.16 -0.36 -0.15 -0.66 ©0.04 ©0.26 2135 1
sigma 0.23 0.60 6.5 0.15 6.19 6.22 0.26 6.36 1713 1
lp__ 14.88 ©.05 1.64 10.52 14.08 15.25 16.08 16.93 1084 1

Samples were drawn using NUTS(diag_e) at Mon Jun ©5 22:52:12 2017.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
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pairs(fit_stan)
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traceplot(fit_stan)
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Robust model: Just change the distribution of Y

data {
int N; // number of observations
int P; // number of columns of X matrix (including intercept)

matrix[N,P] X; // X matrix including intercept
vector[N] y; // response
int nu; // degrees for freedom for student_t

}

parameters {
vector[P] beta; // default uniform prior if nothing specied in model

real <lower=0> sigma;

¥

model {
y ~ student_t(nu, X * beta, sigma );

g

2))

fit3_stan_2 <- sampling(robust_model dso, c(dat_list, nu






Traumatic Brain Injury

e Recovery after coma
e Non-linear asymptotic recovery curves
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//

// Multivariate model for VIQ and PIQ

//

data {
int N;
int J;
matrix[N,2] 1iq;
vector[N] time;
vector[N] coma:
int id[N];



parameters {
vector <lower=1l,upper=10000>[2] hrt;
vector <lower=0,upper=200>[2] asymp;
vector <lower=-100,upper=100>[2] init_def;
vector [2] bcoma;
vector[2] u[J];
cov_matrix[2] Sigma;
cov_matrix[2] Sigma_u;

}

transformed parameters {
real hrt_diff;
real bcoma_diff;
hrt_diff = hrt[2] - hrt[1];
bcoma_diff = bcomal[2] - bcomall]l;
}



model {
vector[2] eta;
// for the multinormal distribution we need to Toop over
for(j in 1:3) u[j] ~ multi_normal(zero, Sigma_u);
for(n in 1:N) {
eta[l] = asymp[1l] + ul[id[n],1] + bcoma[l] * comal[n] +
init_def[1l] * exp(-time[n]/Chrt[1]%1n2));
eta[2] = asymp[2] + u[id[n],2] + bcoma[2] * coma[n] +
init_def[2] * exp(-time[n]/Chrt[2]*1n2));
ig[n,] ~ multi_normal(eta, Sigma);
}
}

observations
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Inference for Stan model: asymp_model 4.

4 chains, each with iter=2000; warmup=100@; thin=1;

post-warmup draws per chain=100@, total post-warmup draws=48€0.
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