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Elements of DAGs (Pearl. 2000. Causality. Cambridge UP)

G = (E ,V )
1 V : nodes or vertices variables (observed and onobserved)
2 E : directed arrows possibly non-zero direct causal effects

X

Z T Y

U

Acyclic: no simultaneity, the future does not cause the past
Encoded assumptions

Absence of variables: all common (observed and unobserved)
causes of any pair of variables
Absence of arrows: zero causal effect
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DAG Terminology

X

Y Z

chain: X → Y → Z
fork: Y ← X → Z
inverted fork: X → Z ← Y

Parents (Children): directly causing (caused by) a vertex i → j
Ancestors (Descendents): directly or indirectly causing (caused
by) a vertex i → · · · → j

Path: an acyclic sequence of adjacent nodes
Causal path: all arrows pointing away from T and into Y
Non-causal path: some arrows going against causal order

Collider: a vertex on a path with two incoming arrows
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Nonparametric Structural Equation Models (NPSEM)

Equivalence to the nonparametric structural equation models:

Y = f1(T ,U, ε1)
T = f2(X ,Z , ε2)
Z = f3(X , ε3)
X = f4(U, ε4)

NPSEM allows:
1 any functional form
2 any form of heterogenous effects
3 any form of interaction effects
4 LSEM as a special case

Likelihood function:

P(X1,X2, . . . ,XJ) =
J∏

j=1

P(Xj | pa(Xj))
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D-separation

Does the conditional independence, A ⊥⊥ B | C, hold where
A,B,C are sets of vertices?

1 Identify all paths from any vertex in A to any vertex in B
2 Check if each path is blocked
3 If all paths are blocked, then A is d-separated from B by C

Path is blocked,
1 if it includes a noncollider vertex that is in C, or
2 if it includes a collider that is not in C and no descendant of any

collider is in C

If A and B are d-separated, A ⊥⊥ B | C holds
If A and B are d-connected (i.e., not d-separated), A 6⊥⊥ B | C in at
least one distribution compatible with DAG
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D-separation Example

U

Z X Y

TW

1 Are W and Y marginally independent of each other?
2 What happens if we condition on Z , X , T , or any combination of

them?
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Backdoor Criterion

Can we nonparametrically identify the average effect of T on Y
given a set of variables X?

Backdoor criterion for X :
1 No vertex in X is a decendent of T , and
2 X d-separates every path between T and Y that has an incoming

arrow into T (backdoor path)

Need to block all non-causal paths
In the previous example, does X satisfy the backdoor criterion?

Backdoor criterion implies the confounder selection criterion:
(VanderWeele and Shpitser. 2011. Biometrics)

If there exist a set of observed covariates that meet the backdoor
criterion, it is sufficient to condition on all observed pretreatment
covariates that either cause treatment, outcome, or both.
Estimation: P(Yi(t)) =

∑
x P(Y | T = t ,X = x)P(X = x)
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Example of Backdoor Criterion

U1

T

X1 X2

U2 Y

U4U3

Can we identify the causal effect of T on Y by conditioning on X1?
What about conditioning on X1 and X2?
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M-Structure and M-Bias

U1

T X

U2

Y

Should we condition on X or not?
Conditioning on too many variables can induce bias
Pearl’s smoking and lung cancer example:

X = wearing seatbelt
U1 = attitudes towards social norms
U2 = attitudes towards safety and health measures
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Frontdoor Criterion (Pearl. 1995. Biometrika)

T

M Y

U

U = unobserved confounders
M = mediator causal mechanism
Frontdoor criterion for M:

1 M intercepts all directed paths from T to Y
2 No backdoor path from T to M
3 All backdoor paths from M to Y are blocked by T

P(Y (t)) =
∑

m

{
P(Mi = m | Ti = t)

∑
t ′

P(Y | T = t ′,Mi = m)P(Ti = t ′)

}
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Evaluating Backdoor and Frontdoor Criteria
(Glynn and Kashin. 2018. J. Am. Stat. Assoc. )

National Job Training Partnership Act (JTPA) study
Randomized experiment: ATT on the wage after 18 months

adult female: $702 (participation rate 55%)
adult male: $700 (participation rate 57%)

Non-experimental control group
T : encouragement to participate in the program,
M: actual participation
Y : wage after 18 months

Comparison group for actual participants
backdoor criterion: those assigned to the control group
frontdoor criterion: those who chose not to participate
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Results
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Instrumental Variables (Brito and Pearl. 2002. UAI. )

U1

Z T

U2

Y

U3 W

Z is a valid instrumental variable conditional on W if
1 W contains only non-descendants of Y
2 W d-separates Z from Y in the subgraph Gs obtained by removing

edge T → Y
3 W does not d-separate Z from T in Gs
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DAGitty (http://dagitty.net/)
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Potential Outcomes vs. DAGs Controversy

Imbens and Rubin (2015):
Pearl’s work is interesting, and many researchers find his arguments that
path diagrams are a natural and convenient way to express assumptions
about causal structures appealing. In our own work, perhaps influenced
by the type of examples arising in social and medical sciences, we have
not found this approach to aid drawing of causal inferences.

Pearl’s blog post:
So, what is it about epidemiologists that drives them to seek the light of
new tools, while economists seek comfort in partial blindness, while
missing out on the causal revolution? Can economists do in their heads
what epidemiologists observe in their graphs? Can they, for instance,
identify the testable implications of their own assumptions? Can they
decide whether the IV assumptions are satisfied in their own models of
reality? Of course they can’t; such decisions are intractable to the
graph-less mind.
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Concluding Remarks

Potential outcomes are useful when thinking about treatment
assignment mechanism experiments, quasi-experiments

DAGs are useful when thinking about the causal structure 
complex causal relationships, causal mechanisms

Growing literature on causal discovery

Readings:
Pearl. (2009). Causality. Cambridge UP
Elwert. (2013). Chapter 13: Graphical Causal Models in Handbook of
Causal Analysis for Social Research
Peters, Janzing, and Schölkopf. (2018). Elements of Causal Inference:
Foundations and Learning Algorithms. MIT Press.
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