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That computers are changing the nature of scientific inquiry and the way we
learn about ourselves, the world around us, and our day-to-day lives is obvious.
Computing is ubiquitous. Focus has shifted from “if” to “how” when contemplat-
ing the extent to which computers are augmenting, automating, and enhancing a
particular enterprise. Some experiences are touched more than others, and not
always in a good way. Nowhere is this more true than in data science. Computers
have revolutionized the degree of automation in learning from data and have ex-
panded the fidelity of statistical inquiry to an astonishing degree in recent decades.
At the same time, computers are responsible for a similarly dramatic expansion in
the amount of data recorded, banking measurements on more things and at resolu-
tions vastly higher than ever imagined, except perhaps in science fiction. To cope,
statistical methodology has had to pare back in some areas, as much as ratchet up.

What was for a century, or more, a fairly stable and plug-and-play toolkit for
testing hypotheses and making predictions is today rapidly evolving in a dynamic
landscape. Computational machinery has broken us out of the point-estimation,
central limit theorem-style uncertainty quantification that practitioners seldom fully
internalize. Now we have more intuitive tools, such as cross-validation (CV), boot-
strap, and Bayesian posterior inference via Markov chain Monte Carlo (MCMC).
Computation offers robustness via ensembles and long run averages or (when all
eggs must be in one basket) model selection from alternatives, which, if fully enu-
merated, would be of astronomic proportion. Methods are scored not just on the
old-school trifecta of theoretical justification, empirical accuracy, and interpretive
capability but increasingly on their algorithmics, implementations, speed, poten-
tial for parallelization, distribution, execution on specialized hardware, automation,
and so on. Development has been so feverish that it can be hard for practitioners—
experts in other areas of science—to keep up. Yet at the same time, it has never
been more essential to utilize statistical machinery: to incorporate data and to
make decisions, often in real time, in the face of uncertainty. Many are desperate
for an atlas to help navigate the modern data science landscape. More data and
greater automation may have paradoxically led to greater uncertainty.

Essential tools. Despite the dizzying array of acronyms, experts largely agree
on a relatively compact set of modern fundamentals: bias-variance trade-off and
regularization, control for false discovery, randomization and Monte Carlo, latent
variables, divide-and-conquer, basis expansion, and kernels. Take Monte Carlo as a
first example, a class of methods that are meaningless without the advent of cheap
computing. Monte Carlo, or MC for short, is named for the games of chance played
in the eponymous city on the Mediterranean. From a data science perspective, one
applies MC by interjecting randomness into an otherwise deterministic procedure.
At first glance this seems to be of dubious benefit: how could adding random noise
help, and doesn’t that represent a lot of effort? Computers don’t mind repetitive
tasks, potentially accommodating a substantial degree of randomization without
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breaking a sweat. As for why randomization is useful, well that’s more subtle and
depends on the task at hand.

The simplest and perhaps most widely applied MC method is the bootstrap.
The bootstrap draws its power from the empirical distribution of the (training)
data. Recall that, in the statistics literature, observations are regarded as a ran-
dom sample from an underlying population, and the goal is to learn about that
population from the sample. Most statistical methods posit a model offering a
mathematically convenient caricature of the data-generating mechanism. Models
have parameters that are somehow optimized, say via a measure of fit to the data
like squared-error loss or the likelihood. Since the data are a random sample,
the optimized parameters may be regarded as random variables whose distribution
depends on the relative frequencies of occurrences in the underlying population.
Those estimated parameters are, in the jargon, a statistic. The trouble is, only
with very special models, special parameters, and populations can the distribu-
tion of statistics be derived, or even asymptotically approximated and, therefore,
properly understood. The literature of old is peppered with mathematical acro-
batics toward closed form (approximate) so-called sampling distributions. Even
when they work out, the results can be inscrutable, at least from a practitioner’s
perspective, and therefore they rarely furnish forecasts with meaningful summaries
of uncertainty. Along comes the bootstrap, which says you can usually get the
same thing, at least empirically, for a wide class of models and parameters with a
simple loop: randomly resample your data, estimate parameters, repeat. The col-
lection of optimized parameters constitute an empirical sampling distribution. The
implementation is trivial, may be highly parallelized (because each data resample
is handled in a statistically and algorithmically independent way), and may even
be distributed, meaning that you can even bootstrap over partitioned data whose
elements are, due to storage, legislative, or communication bottlenecks, effectively
quarantined apart from one another. Examples include data collected and stored
locally by ISPs or e-commerce giants like Amazon or Google.

Methods like the bootstrap, offering the potential to understand uncertainty in
almost any estimate, open up the potential to explore a vast array of alternative
explanations of data. But that uncertainty, or variance, is but one side of the
accuracy coin, i.e., how far our inferences are from the “truth”, or at least something
useful. The other side is bias. Statisticians learned long ago that it is relatively easy
to reduce uncertainty in forecasts with stronger (or simpler) modeling assumptions,
more data, and usually both. But often that did not lead to better forecasts.
Exploring the bias-variance trade-off was difficult before computers got fast. These
days it is easy to enumerate thousands of alternative models and evaluate forecasts
out-of-sample with MC validation schemes such as CV. The most common CV setup
partitions the data into equal-sized chunks and then iterates, alternately holding
each out for testing. Candidate predictors are fit to training data comprising of the
chunk’s complement in the partition, and are evaluated on the hold-out testing set.
By performing a double loop, over predictors/models and partition elements, one
can access the predictive accuracy, or any other score out-of-sample, and select the
best alternative.

Now for some classes of models it is possible to leverage a degree of analytic
tractability while exploring the bias-variance trade-off, and thereby explore (at
least implicitly) a dizzying array of alternatives. The best example is the lasso for
linear models relating a response, or output variable, to a potentially enormous
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set of explanatory, or input variables. The lasso is part of a wider family of reg-
ularized regression methods pairing a loss function (usually squared error) with a
constraint that the estimated coefficients are not too large. It turns out to be eas-
ier, and equivalent, to work with an additive penalty instead. The lasso uses an L1
penalty, λ

∑
j |βj |, which maps out a space wherein optimal solutions are on “cor-

ners” where some coefficients are set identically to zero, effectively deselecting input
coordinates—de facto model selection, in a limited sense. Clever coordinatewise al-
gorithms make the search for optimal coefficients blazingly fast and even enable a
continuum of penalty parameters λ to be entertained in one fell swoop, so that all
that remains is to pick one according to some meta-criteria. CV is the most popular
option, for which automations are readily available in software. Information criteria
(IC), which essentially contemplate out-of-sample accuracy without actually mea-
suring it empirically, offer further computational savings in many settings. Some
formulations, i.e., of penalty and information criteria, have links to Bayesian poste-
rior inference under certain priors on the unknown coefficients. It can be shown that
the lasso estimator represents the maximum a posteriori (MAP) estimator under
an independent Laplace prior for the βj . In a fully Bayesian framework one has the
option of Markov chain Monte Carlo (MCMC) inference if sufficient computational
resources are available. The advantage could be more accurate prediction via model
averaging, i.e., entertaining many models of high posterior probability rather than
simply the most probable (MAP) selection.

Researchers have discovered that this “trick” (regularizing in such a way as to
automatically detect useful explanatory variables) has analogies in settings well be-
yond ordinary linear regression: from linear-logistic (and other generalized linear
model families) to nonlinear and nonparametric settings. Basis expansion, which
generates so-called features from explanatory variables by transformation and in-
teraction (multiplying pairs of features together), allows linear models on those
features to span rich function spaces, mapping inputs to outputs. This all works
splendidly as long as judicious regularization is applied. Again, CV, other MC vali-
dation methods, and MCMC can play a viral role. MC and regularization are even
important when entertaining inherently nonlinear models, such as those based on
trees, kernels, and artificial neural networks.

Tree-based regression provides a divide-and-conquer approach to large-scale non-
linear modeling, and it is especially attractive when nonlinear interactions are
present. Trees—merely special graphs to mathematicians—are a fundamental data
structure to computer scientists with many efficient libraries available for convenient
abstraction and fast implementation. Statisticians have simply ported tree-based
data structures over to learning. The idea is to let the data decide how to “divvy”
up the input space recursively via binary splits on individual input coordinates
(e.g., xj ≤ 5) placed at internal nodes of the tree, so that simple models can be
fit at the regions of the input space demarcated by the partitions, or the so-called
leaves of the tree. Appropriate leaf models are dictated by the nature of the re-
sponse, with constant (unknown mean) and linear models being appropriate for
regression, and multinomial models for classification. Splitting locations can be
chosen according to any of several optimization heuristics, again depending on the
leaf model, but the key is preventing over-fit by growing trees too deep, i.e., by
having too many elements in the partition. One solution to this again involves MC
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validation (e.g., CV). These form the basis of older CART1 methods. However, two
newer schemes have become popular as computing power has increased several-fold:
Bayesian MCMC exploration of tree-posteriors, and boosting and the bootstrap.
The former boasts organic regularization through a prior over tree space, and it has
been extended to sums of trees with Bayesian additive regression trees (BART).
In BART, the prior encourages shallow trees when many are being summed. A
non-Bayesian analogue of sums of trees, both actually predating BART, can be
obtained via boosting or the bootstrap. Boosting targets a best (weighted) sum of
shallow trees, or decision stumps, whereas a bootstrap can yield many trees, each
fit to randomly subsampled data, which can be averaged, leading to a random forest
predictor—an example of so-called bootstrap aggregating, or bagging. Tree based
predictors, especially in ensembles, are hard to beat when inputs interact in their
functional relationship to outputs, and when both sets of variables lack a degree of
regularity, usually manifested in the form of smoothness.

Take either of those challenges away, and kernels are king. To understand how
kernels work, it helps to think about how distance in the input space relates to
correlation (i.e., linear dependence) and other forms of probabilistic or functional
dependence in outputs. Testing locations with inputs far from training data inputs
should have outputs which are less highly correlated, or dependent, and vice versa.
There are some nice computational tricks in play when distances are measured in
a certain way. And you can think of the choice of distance as a mapping from the
original input space into a feature space, wherein calculations are relatively straight-
forward (linear). The best example is so-called Gaussian process regression, where
pairwise (often inverse exponential Euclidean) distances in the input space define a
multivariate normal (MVN) covariance structure. Then, simple MVN conditioning
rules provide the predictive distribution. One can interpret the entire enterprise
as Bayesian, with priors over function spaces leading to posteriors. However, in
the opinion of many practitioners, that endows things with the sort of technical
scaffolding that obfuscates, unless you are already of the opinion that all things
Bayesian are good.

A road-map. One criticism may be that modern statistical learning feels a bit like
shooting first and asking questions later: algorithms targeting a particular behavior,
and if they seem to work somebody might try to prove a little theory about it—to
explain why it works and how similar tactics may (or may not) port to other learning
tasks. That makes for a landscape that can be hard to navigate, particularly for
“newbies”. Although there are prospectors who know their particular canyons well,
there are few who know how we got here or where “here” is. Building a map from
the old to the new requires cartographers to span both worlds. Such folks are in
short supply. Brad Efron and Trevor Hastie are vanguards in the statistics world,
having managed to be many things to many people and having been claimed by
(modern) classical statisticians, Bayesians, and machine learning researchers alike.

Their new book, Computer age statistical inference is the (mathematically so-
phisticated) data scientist’s road-map to modern statistical thinking and computa-
tion. It covers nearly all of the topics outlined above, in a succinct and elegant way,
and with carefully crafted illustrative examples, emphasizing a methodology’s evo-
lution as well as its implementation, aspects which often speak more loudly about
their popularity than technical detail. However this is not a cookbook. Although

1Classification and regression trees
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pointers are made, usually to R packages, the book has almost no code. This is
probably by design. If they had provided, say, R code, few in the machine learning
community would buy it, as they prefer Python. And vice-versa with statisticians.

The book is in three parts. The first part, on classic statistical inference, offers
some context. This is a great read for someone who knows the material already—
an abridged summary of the landscape “a hundred years ago”. The middle of
the book, Part II, is even better. It covers a transitional period. The researchers
who developed this methodology were prescient, or lucky, in that they anticipated
computational developments on the horizon. They developed algorithms for the
machines of the 1970s–1990s, but if computing never matured, none of them would
have been household names (James–Stein, ridge regression, expectation maximiza-
tion, bootstrap, CV, etc.). Although the topics in Part III comprise of essential
tools in the modern arsenal, those in Part II are in many ways more important
to the reader. These chapters teach the foundational statistical and computational
concepts, out of which the Part III topics grew, and they will be key to understand-
ing the next big thing.

Part III offers a sampling of the most important and most recent advances. It
starts with large-scale (big-p) model selection, and the multiple testing issues which
ensue, perhaps as a means to transition into variable selection via the lasso. Then
comes tree-based methods, and ensembles thereof, via the bootstrap and boosting.
These chapters, though short and sweet, are surprisingly complete. The latter
chapters, however, leave much to the imagination. In part that is because research
on some topics (e.g., deep neural networks (DNNs)) is perhaps in its infancy. In
other places, full monographs offer greater insight, and references are provided. Or
it may be a matter of the author’s taste and expertise. Whereas support vector
machines are rather more mature and, thus, well-presented in the text, they are
paired with kernels and local regression, and the development here barely scratches
the surface. Gaussian processes (GPs), which often out-perform neural networks
(even deep ones) in lower signal-to-noise regimes (in part because they require less
training data), do not even get a mention. The final two chapters feel a little
misplaced. Post-selection inference, or how to correctly quantify uncertainty in
estimated quantities (like standard errors) after model-selection via optimization
(e.g., lasso), might be better placed closer to the start of the chapter.

Experts in the literature would pick up on the following three omissions. The
first is that treatment of Bayesian inference is awkward. Of the four chapters cover-
ing Bayes, two have essentially the same title, “Empirical Bayes”. Just about every
method—from lasso/linear regression to generalized linear models, trees, forests,
neural networks, and kernels—has highly impactful Bayesian analogues which do
not get a mention in the text. Emphasis in the text is on Bayesian-lite method-
ology, including objective and Empirical Bayes, yet these are the variations which
have benefited least from the advent of modern computation. The second issue
regards methods tailored to ubiquitous yet specialized computing architecture such
as graphical processing units (GPSs), symmetric multi-core, and distributed com-
puting. Much work has been done to leverage these modern paradigms, to achieve
astounding computational efficiency gains, yet sometimes at the expense of sta-
tistical efficiency. Divide and conquer, the technique exploited by trees, has been
applied to kernels and GPs for vastly parallelized prediction. GPU implementations
explain much of the excitement in DNNs, and algorithmic tricks derived thereof (not
limited to stochastic gradient descent) are bleeding into other modeling paradigms.
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Third and finally, there is nothing on fast/sparse and distributed linear algebra,
which is dramatically expanding the sizes of problems that can be tackled with
otherwise established (“old”) methodology.

To wrap up with such shortcomings is definitely unfair as overall this is an ex-
cellent text, and to do justice to the hottest methods in statistics/machine learning
could take thousands of pages. Computing advances have revolutionized so many
aspects of our lives, and data—either its collection or the science or making sense
of it—has come to dominate almost all of those aspects. The pace of innovation
is feverish and is poaching talent from every corner of the quantitative sciences.
Efron and Hastie’s Computer age statistical inference offers an excellent handbook
for new recruits: either post-doctoral scholars from non–data science backgrounds,
or graduate students in statistics, machine learning, and computer science. It is a
great primer that helps readers appreciate how we got to where we are, and how
challenges going forward are linked to computation, implementation, automation,
and a pragmatic yet disciplined approach to inference.
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