
Computer Age Statistical Inference: Exercises

Bradley Efron and Trevor Hastie
Stanford University

Many of these exercises use data used in the book. These datasets can be found on the
book webpage https://web.stanford.edu/~hastie/CASI.

Chapter 1 Exercises

1. (a) Fit a cubic regression, as a function of age, to the kidney data of Figures 1.1
and 1.2, calculating estimates and standard errors at ages 20, 30, 40, 50, 60, 70,
80.

(b) How do the results compare with those in Table 1.1?

2. The lowess curve in Figure 1.2 has a flat spot between ages 25 and 35. Discuss how
one might use bootstrap replications like those in Figure 1.3 to suggest whether the
flat spot is genuine or just a statistical artifact.

3. Suppose that there were no differences between AML and ALL patients for any gene,
so that t in (1.6) exactly followed a student-t distribution with 70 degrees of freedom
in all 7128 cases. About how big might you expect the largest observed t value to be?
Hint: 1/7128 = 0.00014.

4. (a) Perform 1000 nonparametric bootstrap replications of ALL (1.5). You can use
program bcanon from the CRAN library “bootstrap” or type in the little program
Algorithm 10.1 on page 178.

(b) Do the same for AML.

(c) Plot histograms of the results, and suggest an inference.

Chapter 2 Exercises

1. A coin with probability of heads θ is independently flipped n times, after which θ is
estimated by

θ̂ =
s+ 1

n+ 2
,

with s equal the number of heads observed.

(a) What are the bias and variance of θ̂?
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(b) How would you apply the plug-in principle to get a practical estimate of se(θ̂)?

2. Supplement Table 2.1 with entries for trimmed means, trim proportions 0.1, 0.2, 0.3,
0.4.

3. Page 14 presents two definitions of frequentism, one in terms of probabilistic accuracy
and one in terms of an infinite sequence of future trials. Give a heuristic argument
relating the two.

4. Suppose that in (2.15) we plugged in σ̂ to get an approximate 95% normal theory
hypothesis test for H0 : θ = 0. How would it compare with the student-t hypothesis
test?

5. Recompute the Neyman–Pearson alpha-beta curve in Figure 2.2, now with n = 20.
In qualitative terms, how does it compare with the n = 10 curve?

Chapter 3 Exercises

1. Suppose the parameter µ in the Poisson density (3.3) is known to have prior density
e−µ. What is the posterior density of µ given x?

2. In Figure 3.1, suppose the doctor had said “1/2, 1/2” instead of “1/3, 2/3”. What would
be the answer to the physicist’s question?

3. Let X be binomial,

Prπ{X = x} =
(
n
x

)
πx(1− π)n−x for x = 0, 1, . . . , n.

What is the Fisher information Iπ (3.16)? How does Iπ relate to the estimate π̂ =
x/n?

4. (a) Run the following simulation 200 times:

• xi
ind∼ N (µi, 1) for i = 1, 2, . . . , 500

• µi = 3i/500

• imax = index of largest xi
• d = ximax − µimax

(b) Plot the histogram of the 200 d values.

(c) What is the relation to Figure 3.4?

5. Give a brief nontechnical explanation of why x610 = 5.29 was likely to be an overesti-
mate of θ610 in Figure 3.4.

6. Given prior density g(µ) and observation x ∼ Poi(µ), you compute g(µ | x), the
posterior density of µ given x. Later you are told that x could only be observed if
it were greater than 0. (Table 6.2 presents an example of this situation.) Does this
change the posterior density of µ given x?
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Chapter 4 Exercises

1. (a) Verify formula (4.10).

(b) Why isn’t the formula for σ̂ the one generally used in practice?

2. Draw a schematic graph of l̇x(θ) versus θ. Use it to justify (4.25).

3. You observe x1 ∼ Bin(20, θ) and, independently, x2 ∼ Poi(10 · θ). Numerically com-
pute the Cramér–Rao lower bound (4.33). Hint: Fisher information adds for indepen-
dent observations.

4. A coin with unknown probability of heads θ is flipped n1 times, yielding x1 heads;
then it is flipped another x1 times, yielding x2 heads.

(a) What is an intuitively plausible estimate of θ?

(b) What Fisherian principle have you invoked?

5. Recreate a version of Figure 4.3 based on 1000 permutations.

6. A one-parameter family of densities fθ(x) gives an observed value x. Statistician A
computes the MLE θ̂. Statistician B uses a flat prior density g(θ) = 1 to compute θ̄,
the Bayes posterior expectation of θ given x. Describe the relationship between the
two methods.

Chapter 5 Exercises

1. Suppose X ∼ Poi(µ) where µ has a Gam(ν, 1) prior (as in Table 5.1).

(a) What is the marginal density of X?

(b) What is the conditional density of µ given X = x?

2. X is said to have an “F distribution with degrees of freedom ν1 and ν2”, denoted
Fν1,ν2(x), if

X ∼ ν2

ν1

Gam(ν1, σ)

Gam(ν2, σ)
,

the two gamma variates being independent. How does the F distribution relate to
the beta distribution?

3. Draw a sample of 1000 bivariate normal vectors x = (x1, x2)′, with

x ∼ N
((

0

0

)
,

(
1 0.5

0.5 1

))
.

(a) Regress x2 on x1, and numerically check (5.18).

(b) Do the same regressing x1 on x2.

3



4. Suppose x ∼ Np(µ,Σ) as in (5.14), with Σ a known p × p matrix. Use (5.26) to
directly calculate the information matrix Iµ. How does this relate to (5.27)?

5. Draw the equivalent of Figure 5.5 for x ∼ Mult3(5,π).

6. If x ∼ MultL(n,π), use the Poisson trick (5.44) to approximate the mean and variance
of x1/x2. (Here we are assuming that nπ2 is large enough to ignore the possibility
x2 = 0.) Hint: In notation (5.41),

S1

S2

.
=
µ1

µ2

(
1 +

S1 − µ1

µ1
− S2 − µ2

µ2

)
.

7. Show explicitly how the binomial density bi(12, 0.3) is an exponential tilt of bi(12, 0.6).

Chapter 6 Exercises

1. Suppose that instead of the Poisson model (6.1), we assume a binomial model

Pr{xk = x} =

(
n

x

)
θxk(1− θk)n−x,

n some fixed and known integer such as n = 10. What is the equivalent of Robbins’
formula (6.5)?

2. Define V {θ | x} as the variance of θ given x. In the Poisson situation (6.1), show that

V {θ | x} = E{θ | x} · (E{θ | x+ 1} − E{θ | x}) ,

where E{θ | x} is as given in (6.5).

3. Instead of (6.8), assume g(θ) = (1/σ)e−θ/σ for θ > 0.

(a) Numerically find the maximum likelihood estimate σ̂ for the Poisson model (6.1)
fit to the count data in Table 6.1.

(b) Calculate the estimates of Ê{θ | x}, as in the third row of Table 6.1.

4. Suppose the butterfly data consisted of only the first 12 counts in Table 6.2. Recal-
culate Table 6.3.

5. Explain carefully why equation (6.27) is valid.

6. Let E1(t) be the number of species seen exactly once in the initial trapping period
and then seen at least once in the new trapping period.

(a) Derive the equivalent of formula (6.15).

(b) What is the equivalent of (6.19)?
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7. The nodes data of Section 6.3 consists of 844 pairs (ni, xi).

(a) Plot xi versus ni.

(b) Perform a cubic regression of xi versus ni and add it to the plot.

(c) What would you expect the plot to look like if the values of ni were assigned
randomly before surgery?

Chapter 7 Exercises

1. Suppose µ ∼ N (M,A) and x | µ ∼ N (µ,D), D > 0 known.

(a) What is the marginal distribution of x?

(b) What is the posterior distribution of µ given x?

2. In Table 7.1, suppose the MLE batting averages were based on 180 at-bats for each
player, rather than 90. What would the JS column look like?

3. In Table 7.1, calculate the JS column based on (7.20).

4. Perform a simulation with B = 1000 binomial (n, P ) replicates to check the accuracy
of (7.21)–(7.22), using n = 90 and P = 0.265.

5. Your brother-in-law’s favorite player, number 4 in Table 7.1, is batting .311 after 90
at-bats, but JS predicts only .272. He says that this is due to the lousy 17 other
players, who didn’t have anything to do with number 4’s results and are averaging
only .250. How would you answer him?

6. Verify (7.39).

7. (a) How were the columns sd(0) and sd(0.1) calculated in Table 7.3?

(b) Calculate β̂(0.2) and sd(0.2).

8. Derive (7.43).

9. Carry out the differentiation following (7.41) to derive (7.36).

10. Derive (7.43).

Chapter 8 Exercises

1. In Figure 8.2, the numbers of mice dying in the 11 groups were 0, 0, 0, 3, 6, 6, 5, 9, 9,
10, 10. Use the R package glm to calculate the red logistic regression curve. What
were the regression curve values at x = 0, 1, 2, . . . , 10?

2. Verify formula (8.9) for the binomial density.
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3. Calculate the “deviance residuals”

Rij = sign(pij − π̂ij)
√
D(pij , π̂ij)

(D(pij , π̂ij) as in (8.14)), in Table 8.2. If model (8.16) fit perfectly we would expect
the Rij ’s to follow an approximate N (0, 1) distribution. How well do you think the
model worked?

4. Verify the Poisson deviance formula in Table 8.4.

5. The expectation of the sufficient statistic z = X ′y in (8.25) is X ′µ(α) according to
(8.27). Use this to give an intuitive interpretation of the MLE equation (8.28).

6. (a) Fit the Poisson regression model (8.39) to the galaxy data, Table 8.5.

(b) Plot the Poisson deviance residuals.

(c) Where does the fit seem poor?

(d) How might you add to model (8.39) to get a better fit?

7. Verify formula (8.60).

Chapter 9 Exercises

1. Formula (9.4), with i = 1, gives

Sj =

j∏
k=1

(1− hk)

as the probability of surviving past age j. How does this relate to formula (9.1)?

2. What does formula (9.17) reduce to if there is no censoring? (And why does this
make sense?)

3. Redraw Figure 9.2, changing the “knot” location from 11 to 12.

4. Compute the equivalent of Table 9.4 for months 7 through 12.

5. Why does the hypergeometric distribution enter into formula (9.24)?

6. Derive formula (9.34).

7. Using the bivariate normal data for Figure 9.3, recreate Table 9.8.

8. Give a more careful version of argument (9.56)–(9.58).
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Chapter 10 Exercises

1. (a) Use the jackknife to assess the standard error of θ̂ = correlation(xi, yi) for the
kidney function data.

(b) Examine the differences θ̂(i) − θ̂(·). Do any of the observations (xi, yi) make
particularly big contributions to ŝejack?

2. Why is a nonparametric bootstrap sample the same as an i.i.d. sample of size n drawn
from the empirical probability distribution F̂?

3. Use the R program boot in package boot to recreate Figure 10.2.

4. Verify formula (10.38) for the number of distinct bootstrap samples.

5. A normal theory least squares model (7.28)–(7.30) yields β̂ (7.32). Describe the para-
metric bootstrap estimates for the standard errors of the components of β̂.

6. Type in algorithm (10.1), page 178. Use it to assess the standard error of θ̂ =
correlation(xi, yi) for the kidney function data.

7. Verify formula (10.70).

8. Suppose n = 3, x = (x1, x2, x3) = (10, 2, 6), and θ̂ = mean(x). Fill in the bootstrap
and jackknife values for all of the points in Figure 10.3.

9. A survey in a small town showed incomes x1, x2, . . . , xm for men and y1, y2, . . . , yn for
women. As an estimate of the differences,

θ̂ = median{x1, x2, . . . , xm} −median{y1, y2, . . . , yn}

was computed.

(a) How would you use nonparametric bootstrapping to assess the accuracy of θ̂?

(b) Do you think your method makes full use of the bootstrap replications?

Chapter 11 Exercises

1. We observe y ∼ λG10 to be y = 20. Here λ is an unknown parameter while G10

represents a gamma random variable with 10 degrees of freedom (y ∼ G(10, λ) in the
notation of Table 5.1). Apply the Neyman construction as in Figure 11.1 to find the
confidence limit endpoints λ̂(0.025) and λ̂(0.975).

2. (a) Say why the standard method intervals are not transformation invariant.

(b) Give a clear example of your explanation.

3. Suppose Ĝ in (11.33) was perfectly normal, say Ĝ ∼ N (µ̂, σ̂2). What does θ̂BC(α)
reduce to in this case, and why does this make intuitive sense?
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4. Show the following:

(a) If a is zero in (11.39) then the BCa endpoints are the same as the BC endpoints
(11.33).

(b) If both z0 and a are zero then the BC endpoints reduce to the percentile endpoints
(11.18).

(c) If z0 and a are zero and Ĝ is normal, Ĝ ∼ N (θ̂, σ̂2), then the percentile endpoints
reduce to the standard endpoints θ̂ ± z(α)σ̂.

5. Suppose θ̂ ∼ Poisson(θ) is observed to equal 16. Without employing simulation,
compute the 95% central BCa interval for θ. (You can use the good approximation
z0 = a = 1/(6θ̂1/2).)

6. Use the R program bcajack (available with its help file from efron.web.stanford.

edu under “Talks”) to find BCa confidence limits for the student score eigenratio
statistic as in Figure 10.2.

7. Write a simulation program to find the bootstrap-t distribution for the student score

data as in Figure 11.5. Does (11.54) seem about right?

8. One can approximate dα/dθ numerically by [α(θ + ε) − α(θ − ε)]/(2ε), ε some small
value such as 0.1. Numerically approximate the Poisson confidence density for x = 10
in Figure 11.6. Note: It may be more convenient to first approximate dθ/dα.

Chapter 12 Exercises

1. (a) Fit a linear model to the supernova data and recreate Figure 12.1.

(b) Remove the five predictors with the smallest (in absolute value) regression coef-
ficients, and refit the supernova data using just the five remaining predictors.

(c) Compare the two fits in terms of squared error predictive power.

2. (a) Compute the cross-validated error (12.21) for the two models in problem 12.1.

(b) Recompute the cross-validated error following the “remove five smallest” rule at
each cross-validation step.

3. Give a clear explanation of why Figure 12.3 is counterintuitive, and what the last
sentence of Section 12.2 means.

4. Equation (12.45) says that positive correlation between yi and µ̂i should increase our
estimate of prediction error. Why is this intuitively correct?

5. Show that the SURE formula (12.58) agrees with Mallow’s estimate (12.51) in the
linear case (12.47).
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6. Use the bootstrap to compute the degrees of freedom as in Figure 12.4, but now for
lowess(x,y, 1/6).

7. Verify (12.70).

8. Give a careful argument relating Figure 12.5 to Figure 12.6.

Chapter 13 Exercises

1. A one-parameter family fµ(x) gives MLE µ̂ having standard deviation σµ = [varµ(µ̂)]1/2.
Jeffreys’ prior is gjeff(µ) = 1/σµ. Suppose we transform coordinates to parameter λ
according to the transformation

dλ

dµ
=

1

σµ
.

What does gjeff(µ) transform into on the λ scale?

2. Verify (13.21) by the direct application of Bayes rule.

3. Compute the ratio of posterior densities, Jeffreys’ prior over flat prior, as in the top
two panels of Figure 13.2. Display the ratios as a grid of values.

4. Calculate the parametric bootstrap confidence density (11.68) for the vasoconstriction
data, model (13.24)–(13.25).

5. One thousand independent flips of a coin yielded 563 heads and 437 tails. What is
BBIC for testing

H0 : the coin is fair?

(You can use normal approximations.) Compare Jeffreys’ and Fisher’s assessments of
H0.

6. Suppose the i.i.d. data x1, x2, . . . , xn were grouped into pairs,

X1 = (x1, x2), X2 = (x3, x4), . . . , Xn/2 = (xn−1, xn),

with the Xi’s considered to be the individual data points (rather than the xi’s). How
would this affect the BIC criterion (13.40)?

7. Carry out 1000 Gibbs sampling steps (13.70)–(13.71), as in the blue histogram of
Figure 13.5.

8. Give an interpretation of the results in Figure 13.7.
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Chapter 15 Exercises

1. Show that Holm’s procedure (15.10) is more generous than Bonferroni in declaring
rejections.

2. Redraw Figure 15.3 for q = 0.2.

3. (a) Let S0(z) = 1−F0(z) and Ŝ(z) = #{zi ≥ z}/N . Show that (15.14) is equivalent
to Ŝ(z(i)) ≥ S0(z(i))/q.

(b) Give an intuitive explanation of what this says about the Benjamini–Hochberg
rejection region if, say, q = 0.1.

4. For an observed data set of z-values z1, z2, . . . , zN , a case zi of particular interest just
barely made it into the Benjamini–Hochberg Dq rejection region. Later you find out
that 25 of the very negative other z-values were actually positive, and exceed zi. Is
H0i still rejected?

5. In the two-groups model (15.19), we define the “true discovery rate” as tdr(z0) =
Pr{case i is non-null | zi = z0}. What is the expected value of tdr(z)?

6. Suppose we believe g(µ) ∼ N (0.10, 0.632) for the police data, as suggested in Effect
size considerations, page 288. What would this say about bias in the 2006 New York
City police force?

7. The histogram in Figure 15.9 uses 49 bins, equally spaced between −4 and 4.4.

(a) Compute the histogram counts yi, i = 1, 2, . . . , 49.

(b) Fit a Poisson regression glm(y ∼ poly(x, 6), Poisson), with x the vector of bin
centers.

(c) Compute the Poisson deviance residuals (8.41). Do you think the fit is satisfac-
tory?

(d) Plot the equivalent of Figure 15.6.

(e) Apply locfdr and comment.

8. In searching for interesting voxels in the DTI study, what would be a simple way to
compensate for the wave effect seen in Figure 15.10?

Chapter 16 Exercises

1. In forward-stepwise regression, we include the variable at each step that improves the
residual-sum-of squares the most. You notice that in a software package you were
using, the variable is chosen that has the maximum absolute correlation with the
current residual. Are these two approaches equivalent? Explain.

2. Describe in some detail an efficient approach for computing the forward-stepwise re-
gression model path.
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3. In (16.5) on page 309, we show that the coefficient profile for the lasso path is piecewise
linear. Can you use this relationship to discover at what value of λ < λ1 the active
set A changes? Explain.

4. Run a simulation to compare the df of best-subset regression and lasso. Use p = 30
variables and n = 200 observations to build an X matrix, generated from a multi-
variate Gaussian distribution with non-trivial covariance (of your choice). Now pose
a response model y = Xβ + ε and specify β in advance. In your simulations hold X
and β fixed, and generate new ε at each run. Make a plot similar to the right plot in
Figure 16.8

5. Derive the coordinate-descent update (16.17).

Chapter 17 Exercises

1. Explain in detail why OOB error for random forests is almost identical to LOO (leave
one out) error when the number B of trees is large.

2. Fit a sequence of random forests to the spam data, varying the parameter m from 1
to 57 (about 10 values) and using a large number B = 5000 trees each time. Plot the
OOB error as a function of m, as well as the test error. Construct a plot that shows
how the variable importance measures change with m. Make some overall conclusions
from what you have learned.

3. Consider algorithm 17.3, step 2(a). Suppose we have found a tree g(x; γ) with K
terminal nodes, as in step 2(b) of algorithm 17.4. Assume the loss L corresponds to
an exponential family model (e.g binomial, Poisson etc). Show how we can replace
(and improve) the constants in the terminal nodes by a new set of constants by fitting
a GLM with an offset and a K level factor variable as the only predictor.

4. Consider the gradient boosting algorithm 17.4. Instead of approximating the gradient
with a tree, approximate it by univariate linear regression on the predictor most
correlated with it, followed by shrinkage by ε. Outline this algorithm, and show that
at each step the fit is a linear model. What will happen as the number of steps gets
large?

5. Implement your algorithm in 4, and apply it to the spam data (use the “started” log
transformation for each variable, and the binomial deviance as a loss function). Make
a plot of the evolving coefficients as a function of the step number, using ε = .01.
Compare the coefficient profile to that obtained using the logistic-regression lasso.

6. When we fit a lasso to the spam data, we worry about the skewness of the input
features, and apply a (started) log transformation. Should we do the same for a
random forest? Explain.
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Chapter 18 Exercises

Some of the exercises for this section require the installation of software for fitting deep
neural networks. The authors have used both the h2o.ai software, as well as the keras

package in R.

1. Fit the model as shown in Figure 18.3 to the MNIST digit data, using for example
the keras package in R. Compute the confusion matrix on the test data for your fitted
model.

2. Derive and verify equations 18.10–18.15 for a neural network with K = 3: an input
layer, a single hidden layer, and an output layer. Assume a single output and squared-
error loss.

3. Verify the assertion below (18.21) that Â = V.

4. Using a simulated data set, verify empirically that making multiple copies of the
training data with added noise gives a solution close to ridge regression. Use a data
matrix of size 100×5 (with non-trivial correlations), and compare with the traditional
version of ridge linear regression (squared-error loss).

5. Fit a deep CNN to the CIFAR 10 image dataset using the keras package or similar
software (data can be found at https://www.cs.toronto.edu/~kriz/cifar.html.)
Try and get your test error below 10%, and report the confusion matrix for your
network.

6. Suppose we solve a least-squares problem with p > n by gradient descent: β ←
β − ε∂L(β)

∂β . We start at β = 0 and use a small stepsize ε.

(a) Show that if the points are in general position, the residuals will converge to zero
(modulo ε).

(b) Show that the converged β corresponds to the minimum-`2-norm solution.

Chapter 19 Exercises

1. Consider the leukemia data in Figure 19.2. Suppose we code the binary response y
as +1 and -1, and fit a ridge-regression using the 3571 gene-expression variables:

min
α,β
‖y − 1α−Xβ‖2 + λ‖β‖2.

(a) Show that as λ ↓ 0, Xβ̂λ → y.

(b) Show that the limiting β̂0 has minimum `2 norm among all least-squares solutions
that fit the response vector y exactly.

(c) The solution could be represented as in the left plot of Figure 19.2, except all
the training points would be on the margin.
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(d) Which solution would have the widest margin? The SVM or minimum-norm
regression?

(e) Using the leukemia data, reproduce the left panel using this minimum-norm
regression approach.

2. Show that solving criterion (19.5) is equivalent to solving (19.6).

3. Consider fitting a logistic regression problem with p � n, such as for the leukemia

data, using a ridge penalty on β. Using the QR decomposition of XT , show that the
problem can be solved instead by fitting a ridged logistic regression with n variables.
Discuss what would need to be done if 10-fold cross-validation were to be used to
select λ.

4. Consider fitting a kernel logistic regression to the leukemia data, along the lines of
(19.17) using a radial kernel.

(a) Show that the problem can be reduced to fitting a standard ridged logistic re-
gression.

(b) Use the package glmnet fit the ridge path for these data, and show the test error
as a function of λ.

(c) Repeat the above with two other values for the kernel parameter γ (see 19.11),
as well as for the linear ridge regression model. Superimpose on your plot the
SVM test error as a horizontal line.

5. Consider the spam dataset, and recode each predictor x as x′ = I(x > 0). Some of
the recoded predictors are all 1, and these can be removed for the purposes of this
exercise. Fit the SVM path using (19.6), as well as the ridge path using (19.7), and
show their performance on the test data as a function of ‖β̂‖2. Summarize what you
see. Is plotting against ‖β̂‖2 the correct basis for comparison? Propose a better way
to compare their performance.

Chapter 20 Exercises

1. Given data on two variables X and Y , consider fitting a cubic polynomial regression
model f(X) =

∑3
j=0 βjX

j . In addition to plotting the fitted curve, you would like a
95% confidence band about the curve. Consider the following two approaches:

(a) At each point x0, form a 95% confidence interval for the linear function aTβ =∑3
j=0 βjx

j
0.

(b) Form a 95% confidence set for β as in (20.12), which in turn generates confidence
intervals for f(x0).

How do these approaches differ? Which band is likely to be wider? Conduct a small
simulation experiment to compare the two methods.
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2. Consider the Cholersterol data in Figure 20.1.

(a) Use the gam function in package mgcv to fit a smooth curve. The function fits a
smoothing spline, and selects the amount of smoothing automatically. Save the
smoothing parameter ‘‘sp’’ from the fit. Plot the data and the fitted curve.

(b) Run a bootstrap experiment, with B = 300. For each bootstrap sample, refit the
GAM model with automatic selection of the smoothing parameter. For the same
sample, refit the GAM with the saved value of the smoothing parameter. For
each pair of fits, superimpose their curves on the original plot (in two different
colors).

Summarise your conclusions.

3. In medical applications we are often interested in the relative improvement of one
treatment versus another. Suppose a proportion rA of nA randomly selected mice
responded to treatment A. Likewise rB of nB randomly chosen (and different) mice
responded to treatment B. We define the log-odds ratio as

L = log
rA

1− rA
− log

rB
1− rB

.

Use the delta method to derive an expression for the variance of L.

4. Using the prostate data, write an R program to estimate the marginal density for
the gene expression data. (Hint: model the log-density, using the “Poisson trick”
on page 249, using a basis of natural splines). Use your fitted density to produce a
version of the black conditional-mean curve in Figure 20.7.

Chapter 21 Exercises

1. This problem applies the g-modeling approach of Sections 21.2–21.4. Since the publi-
cation of the book, an R package deconvolvR has been produced by the first author
and B. Narasimhan. This package is available on CRAN, and should be installed.

(a) Estimate the prior distribution for the effect sizes for the prostate data, as
described in Section 21.4. Use a basis of natural splines to represent the log-
density for the prior. Assume a common conditional variance σ2

0 (21.49), but
give some justification for the value you used.

(b) Use your fitted posterior distribution to estimate Pr(|µ| < 0.2).

(c) Compute the conditional mean curve E(µ|X = x) and compare to the one pro-
duced in Figure 20.7.

2. Use the package deconvolveR to fit the prior density for the butterfly data in
Chapter 6. Help can be obtained by following the Vignette for the package, and
the referenced paper. Describe the bias in the prior density estimate, and apply the
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bias correction suggested in the vignette. Use your model to produce a version of
Figure 6.2.

3. Describe how the estimation for the GLMM in Section 21.5 proceeds. Your description
can consist of a series of steps, with a high level description of each step, but sufficient
detail such that it could actually be implemented by a statistically savvy data scientist.
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