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These are three basic theorems that help to elucidate the relationship between various
models that aim to estimate the effect of a variable or group of variables controlling for other
variables.

The first theorem, the projection theorem, simply states that if you express a vector Y as a
sum of a linear combination of columns of a matrix X plus a vector that is orthogonal to the
columns of X, then you have the unique decomposition corresponding to the least-squares
regression or Y on X.

The second theorem, which formally states the equivalence between the simple regression in
the ‘Added Variable Plot’ – also known as the ‘Partial Regression Leverage Plot’ in PROC
REG in SAS – and the estimated coefficient for the corresponding variable in a multiple
regression. The theorem shows how the AVP is sufficient assuming the validity of the model
and also provides a useful visual diagnostic to detect influential points and other model
violations.

The third theorem concerns the properties of a linear version of the ‘propensity score’ that
has come to play such an important role in what is known as the Rubin Causal Model for
inference. The idea is that, if you want to estimate the ‘effect’ of a variable X controlling for
a number of other variables, Z1, Z2, ..., Zk then the coefficient for X in the full multiple
regression will be the same as the coefficient in the regression with only two predictors: X
and X̂, where X̂ is the predicted value of X based on the variables Z1, Z2, ..., Zk. This
implies that you can estimate the ‘effect’ of X controlling for a possibly large number of
confounding factors by controlling only for a subset of the factors that provide the same
prediction of X that would be provided by the entire set. For example, if Zh+1, ..., Zk are
related to X only through Z1, ..., Zh, then, in order to get an unbiased estimate of the
coefficient of X controlling for Z1, ..., Zk, it suffices to perform a multiple regression on X
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and Z1, ..., Zh.

This is a simple linear version of the more general ideas developed in graphical causal models
by Judea Pearl and others. The idea that you only need to control for a subset of
confounding factors corresponds to the ‘back-door’ criterion in causal models.

There is both a gain and a price to pay for the use of a simpler model. The model to predict
X may be much better understood than the model that generates Y which can result in an
estimate of the effect of X in whose validity you have greater confidence. The price that you
pay is that the model for Y may have a greater residual standard error so that the estimate
of the effect of X has a greater standard error. One sacrifices statistical precision for greater
confidence in accuracy.

1 The Projection Theorem
The projection theorem says that if you express a vector Y as a sum of two components: a
linear combination of a matrix X of full column rank and a vector that is orthogonal to the
space spanned by X, then the coefficients of the linear combinations of columns of X are the
unique least-squares regression coefficients and the second vector is the unique least-squares
residual vector.

This theorem is useful because we often manipulate variables and matrices into this form
and the theorem allows us to immediately conclude that we have identified the least-square
coefficients and the residual vector.

Theorem: (Projection theorem) Let X be a matrix of full column rank and let

Y = Xb + e

where e is orthogonal to span(X)

Then b is the vector of estimated coefficients for the least-squares regression of Y on X, e is
the least-squares residual vector and ||e||2 = e′e is the least-squares error sum of squares,
SSE.

Proof:

Let β̂ be the least-squares regression coefficients.

β̂ = (X ′X)−1X ′Y

= (X ′X)−1X ′Xb + (X ′X)−1X ′e

= b + (X ′X)−10 since e ⊥ span(X), i.e. X ′e = 0
= b

and thus e = Y − Xβ̂, the least-squares residual vector. □

Corollary: Let X1 and X2 be matrices such that the partitioned matrix [X1X2] is of full
column rank. Let

Y = X1b1 + X2b2 + e with e ⊥ span(X1, X2)
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Then b1 and b2 are equal to the coefficients of the least-squares regression of Y on X1 and
X2 and e is the least-squares residual.

2 The Added Variable Plot Theorem
Our next theorem is the ‘Added Variable Plot Theorem’ (AVP) more formally known as the
Frisch-Waugh-Lovell Theorem. It took 30 years to prove it but here’s an easy proof based on
the projection theorem.

In terms of the AVP, the theorem states that a simple regression in the AVP for the
regression of Y on X1 controlling for X2 provides the same inferences (except for the number
of degrees of freedom for error) for the effect of X1 as the multiple regression of Y on X1 and
X2. Note that X1 and X2 can each contain one or more columns. In most applications with
an intercept term, the column of 1’s will be in X2.

Let’s first define the AVP. We define it so it can be used for more than one variable in X1
although in typical applications X1 has only one column.

Definition: (Added Variable Plot) Consider a regression of Y on two blocks of predictors X1
and X2. The AVP for X1 adjusted for X2 is the plot of the residuals of Y regressed on X2
against the residuals of X1 regressed on X2.

Theorem: (AVP or Frisch-Waugh-Lovell) Consider the regression of Y on two blocks of
predictors, X1 and X2, where the partitioned matrix, [X1X2] is of full column rank. Suppose

Y = X1β̂1 + X2β̂2 + e, with e ⊥ span(X1, X2)

i.e. β̂1 is the regression coefficient for X1 in the least-squares multiple regression of Y on X1
and X2. Then the (residual of Y regressed on X2) regressed on the (residual of X1 on X2)
has

1. least-squares regression coefficient β̂1,
2. least-squares residual equal to e, and
3. SSE = e′e.
4. VarAV P (β̂1) = VarMR(β̂1) where VarAV P and VarMR denote the variances calculated

from the Added-Variable-Plot regression and the Multiple Regression, respectively.

Proof: The residual of Y in the regression on X2 is obtained by pre-multiplying Y by

Q2 = I − P2 = I − X2(X ′
2X2)−1X ′
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and similarly for X1. We obtain

Q2Y = Q2X1β̂1 + Q2X2β̂2 + Q2e

Now, Q2X2 = 0, so that Q2X2β̂2 = 0. Also, since e ⊥ span(X2) it follows that Q2e = e. Thus

Q2Y = Q2X1β̂1 + 0 + e
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Moreover,
e′Q2X1 = e′X1 sincee′Q2 = e′

= 0′ since e ∈ span⊥(X1, X2) ⊂ span⊥(X2)

Thus, by the Projection Theorem, β̂1 is the regression coefficient of Q2Y on Q2X1 and has
SSE = e′e.

Now,

VarAV P (β̂1) = σ2((Q2X1)′(Q2X1))−1

= σ2(X ′
1Q2X1)−1

and, using the Schur complement for the inverse of a partitioned matrix, we get:

VarMR(β̂) = σ2
(

X ′
1X1 X ′

1X2
X ′

2X1 X ′
2X2

)−1

and
VarMR(β̂1) = σ2(X ′

1X1 − X ′
1X2(X ′

2X2)−1X ′
2X1)−1

= σ2(X ′
1(I − X2(X ′

2X2)−1X ′
2)X1)−1

= σ2(X ′
1Q2X1)−1

= VarAV P (β̂1)
□

Corollary: Consider a regresion of Y on X1 and X2 where the partitioned matrix [X1X2] is
of full column rank. Let Z be a matrix of full column rank such that span(Z) = span(X2).
Then the regression coefficient(s) of Y on X1 in the regression of Y on X1 and X2 is the
same as the regression coefficient(s) of Y on X1 in the regression of Y on X1 and Z.

3 The ‘Linear Propensity Score’ Theorem
Finally we show that, the partial coefficient for the regression of Y on X1 adjusting for X2 is
the same as the partial coefficient for the regression of Y on X1 adjusting for the predictor of
X1 based on X2, i.e. P2X1 = X2(X ′

2X2)−1X ′
2X1. However, the SSE of this regresion may

be larger than that of the full multiple regression which is equal to that of the AVP
regression.

Theorem: (Linear Propensity Score) Consider the regression of Y on two blocks of
predictors, X1 and X2, where the partitioned matrix [X1X2] is of full rank.

Suppose
Y = X1β̂1 + X2β̂2 + e, with e ⊥ span(X1, X2)

Consider, also, the regression of Y on X1 and the predicted value of X1 based on X2.

Then the regression coefficients on X1 are the same for both regressions and

Y = X1β̂1 + X̂1|2γ̂2 + d + e
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with d ∈⊂ span(X2) ∩ span(X̂1|2)⊥. Thus d ⊥ e, d + e ⊥ span(X1, X̂1|2) and the SSE for the
second regression is at least as large as that of the first regression and is equal to d′d + e′e.

Proof: To simplify the proof, we assume that X1 has only one column but the more general
result can also be proven.

Let X̂1|2 = P2X1 where P2 = X2(X ′
2X2)−1X ′

2. Let Z be a basis for the orthogonal
complement of X̂1|2 in span(X2).

Then by the corollary to the AVP theorem, the coefficient of X1 in the regression of Y on
X1, X̂1|2 and Z is β̂1 so that

Y = X1β̂1 + X̂1|2γ̂2 + Zγ̂3 + e

= X1β̂1 + X̂1|2γ̂2 + d + e

Now we show that Z, hence d, is orthogonal to X1. Consider that X̂1|2 = P2X1. Since
span(Z) ⊥ span(X̂1|2) by construction, we have Z ′P2X1 = 0. But span(Z) ⊂ span(X2) so
that P2Z = Z.

Thus, 0 = Z ′P2X1 = Z ′X1 and d ∈ span(Z) is orthogonal to span(X1, X̂1|2). Since
d ∈ span(X2), we have d ⊥ e and the result follows. □
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