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1 The Generalized Gauss-Markov Theorem

Let
Y = Xβ + ε

where

1. Y is a n × 1 vector of observations, 2, X is a n × p matrix of ob-
served values and X is of full column rank,

2. β is an unobserved p× 1 vector, and
3. ε is an unobserved n × 1 random vector, where we know that

E(ε) = 0 and Var(ε) = cΣ, with c a possibly unknown positive
constant, and Σ a known n× n positive definite matrix.

Consider the problem of estimating, η, a linear combination of β

given by η = Lβ where L is a given h× p matrix.
The conclusion of the theorem is that the best (minimum variance)

estimator of η among estimators that are:

1. linear: of the form η̂ = AY where A is a h× n matrix, and
2. unbiased: E(η̂) = η for all values of β,

is:
η̂ = Lβ̂

where
β̂ = (X′Σ−1X)−1(X′Σ−1Y)

This estimator is called the BLUE of η. Its variance is

Var(η̂) = L(X′Σ−1X)−1L′

Many important practices in statistics devolve from this theorem.
You can use it to prove many special cases.
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1.1 The sample mean is the BLUE of the population mean

For example, if Y1, ..., Yn are uncorrelated each with mean µ and
variance σ2 (known or unknown), then the BLUE of µ is Ȳ. To prove
this using the GGM, consider what happens if you let X be a column
of 1’s and cΣ = σ2 I where I is the n× n identity matrix.

1.2 Combining estimators with weights proportional to inverse variances

Here is one of the most important consequences of the GGM:
Let β̂1, ..., β̂k be k uncorrelated unbiased estimators of the same

unknown parameter β. Suppose that it is known that

Var(β̂i) = Σi

where Σ1, ..., Σk are positive-definite matrices that are known or
known up to a common constant factor.

Then the BLUE of β is the weighted average of the β̂is with weights
proportional to the inverse of their variances, i.e.

β̂ =

{
k

∑
i=1

Σ−1
i

}−1{ k

∑
i=1

Σ−1
i β̂i

}
with variance:

Var(β̂) =

{
k

∑
i=1

Σ−1
i

}−1

Exercise: Prove this using the GGM.
Hint: Let X be a vertical stack of identity matrices and Σ be a

block-diagonal matrix formed with matrices Σi in the diagonal
blocks.

2 One-way ANOVA with random effects

We will see what the GGM tells us about different ways of estimating
the mean of a population when we have a clustered sample.

We will consider the simplest possible use of mixed models: one-
way analysis of variance with random effects, where observations on
a variable Y are obtained in clusters and where the goal is to estimate
the overall mean of the population from which the Ys originated.

Let’s call the cluster variable I with values i = 1, ..., K.
We’ll use notation that is consistent with the notation for the gen-

eral mixed model, although the notation is unnecessarily complex for
this simple example.

Let the overall population mean be γ00 and let the ‘true’ mean for
cluster i be:

β0i = γ00 + u0i, i = 1, ..., K
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where
u0i ∼ iid N(0, g00)

In each cluster, the observations, Yij, are generated as:

Yij = β0i + εij, εij ∼ iid N(0, σ2)

where i = 1, ..., K and, for each i the index j denotes individuals in
the ith cluster with j = 1, ..., ni, where ni is the sample size in the ith
cluster.

Let N denote the total number of observations:

N =
K

∑
i=1

ni

Our goal is to perform inference for the grand population mean of
Y, γ00. We would like to find an efficient (small standard error given
the data) unbiased estimator and we would like to report an honest
estimate of the standard error.

In practice the within-cluster variance, σ2, and the between-cluster
variance, γ00, are unknown and need to be estimated, but we will
consider what could be done if we knew their values. In applications,
we use estimates of these parameters.

2.1 Competing estimators

We will consider 4 plausible estimators of γ00:

1. The pooled approach using

Ȳ =
∑i,j Yij

N

2. The mean of means approach using

ȲM =
∑i Ȳi

K

3. The mean of means weighted by sample size

ȲW =
∑i niȲi

∑i ni

4. The mean of means weighted by inverse variance

ȲIV =
∑i v−1

i Ȳi

∑i v−1
i

where

vi = Var(Ȳi) = g00 +
σ2

ni
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Note that ȲIV is the estimate produced with a mixed model analy-
sis.

Exercises:

1. Show that Ȳ = ȲW , so 1 and 3 are actually the same.

2. Show that all three estimators are unbiased estimators of γ00.

3. Show that, under the assumptions above for the way the Yijs are

generated, Var(Ȳi − γ00) = g00 +
σ2

ni
.

4. Show that, under the assumptions above for the way the Yijs are

generated, Var(Ȳi − γ00) = g00 +
σ2

ni
.

5. Find an expression for the variance of Ȳ− γ00 = ȲW − γ00.

6. Find an expression for the variance of ȲM − γ00.

7. Find an expression for the variance of ȲIV − γ00. Hint: Use the
GGM theorem and you won’t need to do any calculation.

8. What argument can you give for the proposition that ȲIV is a
‘better’ estimator than the others?

9. Why is using weights proportional to(
g00 +

σ2

ni

)−1

the same as using weights proportional to(
1 +

σ2

nig00

)−1

which is also the same as using weights proportional to

ni

(
1 +

nig00

σ2

)−1

10. What happens to the weights defining ȲIV as the ratio g00
σ2 → 0?

11. What happens to the weights defining ȲIV as the ratio g00
σ2 → ∞?

3 To Do:

1. Show how much the estimated variance of Ȳ assuming indepen-
dence is smaller than its correct variance taking clustering into
account. By how much? How does it depends on nis and g00/σ2?

2. Plot variances and relative variances of the three estimators as a
function of nis and g00/σ2

3. Plot the estimated variances under the assumptions that are the
basis of each estimator.
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3.1 Efficiency: Comparison of SEs

First we will see what happens when cluster sizes show moderate
variation.

We will take a sample from 10 clusters in which the number of
observations in each cluster, ni ∼ Poisson(10).

Since the relative SE depends only on the ratio g00/σ2, we will
take σ = 1 and let g00 vary from 0 to 10.

1. Generate sample sizes:

set.seed(23153)

ns <- rpois(10,10)

ns

## [1] 10 12 8 12 11 10 12 8 7 4

sum(ns)

## [1] 94

2. Write a function to compute variances of estimators:

A function that finds the variance of a linear combination of Ȳi as
fuction of a vector of nis and g = g00 when σ = 1.

var_est <- function(g, n, w) {

# g: variance between relative to variance within

# n: vector of sample sizes

# w: vector of relative weights defining estimator as linear comb. of cluster means

# note that var_est is not vectorized wrt g

sum(w�2 * (g + 1/n )) / sum(w)�2

}

3. Find SEs and ratios on a sequence of values for g

dd <- expand.grid(

g = seq(0,10, .01)

)

dd <- within(

dd,

{

# Efficiency: True SEs

se__Y_bar <- sqrt(sapply(g, var_est, ns, ns)) # weights are proportional to sample sizes

se__Y_mean <- sqrt(sapply(g, var_est, ns, 0*ns + 1)) # weights are constant

se__Y_IV <- sqrt(
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sapply(g, function(g) var_est(g, ns, (g + 1/ns)�(-1)))

)

# Relative Efficiency: True SE / Best SE

rel_se__Y_bar <- se__Y_bar/ se__Y_IV

rel_se__Y_mean <- se__Y_mean/ se__Y_IV

# Honesty: RMS of Reported SE

reported_se__Y_bar <- sqrt((g+1)/sum(ns))

rel_reported_se__Y_bar <- sqrt((g+1)/sum(ns))/se__Y_bar

}

)

library(latticeExtra)

## Loading required package: lattice

library(spida2)

gd(lty=c(1,2,4), lwd = 2)

# xyplot(se__Y_bar + se__Y_mean + se__Y_IV ~ g, dd, type ='l',

# auto.key = list(space = 'right', lines = T, points =F))

# xyplot(se__Y_mean + se__Y_IV ~ g, dd, type ='l',

# auto.key = list(space = 'right', lines = T, points =F))

# xyplot(se__Y_mean + se__Y_IV ~ g, dd, type ='l',

# auto.key = list(space = 'right', lines = T, points =F))

# xyplot(rel_se__Y_mean + rel_se__Y_bar ~ g, dd, type ='l',

# auto.key = list(space = 'right', lines = T, points =F))

rat1 <- function(g) {

var_est(g, ns, ns)/var_est(g, ns, (g + 1/ns)�(-1) )

}

rat2 <- function(g) {

var_est(g, ns, 0*ns + 1)/var_est(g, ns, (g + 1/ns)�(-1) )

}

rat1(0)

## [1] 1

rat1(1)

## [1] 1.054225

rat1(10)

## [1] 1.068633
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rat2(0)

## [1] 1.11274

rat2(1)

## [1] 1.001714

rat2(10)

## [1] 1.000022

library(MASS)

##

## Attaching package: 'MASS'

## The following object is masked from 'package:spida2':

##

## Null

?rnegbin

rng <- function(n, m, v) {

# negative binomial using mean and variance

stopifnot(v >= m)

if(v==m) rpois(n,m)

else rnegbin(n, m, m�2/(v-m))

}

Let’s generate a sample with greater variance in n’s

nsgv <- rng(10, 9, 20) + 1

dd <- within(

dd,

{

# Efficiency: True SEs

se__Y_bar2 <- sqrt(sapply(g, var_est, nsgv, nsgv)) # weights are proportional to sample sizes

se__Y_mean2 <- sqrt(sapply(g, var_est, nsgv, 0*nsgv + 1)) # weights are constant

se__Y_IV2 <- sqrt(

sapply(g, function(g) var_est(g, nsgv, (g + 1/nsgv)�(-1)))

)

# Relative Efficiency: True SE / Best SE
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rel_se__Y_bar2 <- se__Y_bar2/ se__Y_IV2

rel_se__Y_mean2 <- se__Y_mean2/ se__Y_IV2

# Honesty: RMS of Reported SE

reported_se__Y_bar2 <- sqrt((g+1)/sum(nsgv))

rel_reported_se__Y_bar2 <- sqrt((g+1)/sum(nsgv))/se__Y_bar2

}

)

xyplot(rel_se__Y_bar2 + rel_se__Y_mean2 ~ g, dd, type = 'l')
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Why the fancy names?

dl <- tolong(dd, sep= '__')

head(dl)

## g time rel_reported_se reported_se rel_se se id

## 1.Y_bar 0.00 Y_bar 1.0000000 0.1031421 1.000000 0.1031421 1

## 2.Y_bar 0.01 Y_bar 0.9579402 0.1036566 1.000191 0.1082078 2

## 3.Y_bar 0.02 Y_bar 0.9214644 0.1041684 1.000654 0.1130466 3

## 4.Y_bar 0.03 Y_bar 0.8894618 0.1046778 1.001276 0.1176867 4

## 5.Y_bar 0.04 Y_bar 0.8611068 0.1051847 1.001986 0.1221506 5

## 6.Y_bar 0.05 Y_bar 0.8357714 0.1056892 1.002743 0.1264571 6

subset(dl, !is.na(rel_se)) %>%
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xyplot(rel_se ~ g, ., groups = time, type = 'l',

auto.key = list(space = 'right', lines = T, points = F ))
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Y_bar
Y_bar2
Y_mean
Y_mean2

subset(dl, !is.na(rel_se)) %>%

xyplot(rel_se ~ g, ., groups = time, type = 'l',

xlim = c(0,1),

auto.key = list(space = 'right', lines = T, points = F ))

subset(dl, !is.na(rel_reported_se)) %>%

xyplot(rel_reported_se ~ g, ., groups = time, type = 'l',

# xlim = c(0,1),

auto.key = list(space = 'right', lines = T, points = F ))

This is the end for now
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Figure 1: Standard error reported by
pooled analysis compared with true
standard error.


	The Generalized Gauss-Markov Theorem
	One-way ANOVA with random effects
	To Do:

