MATH 4939 Mid-term Test

Duration: 50 minutes

February 14, 2024 9:30 am

Instructions:

- Aids allowed: non-programmable calculator.
- Answer all questions in this booklet. You can use both the front and the back of each page.
- The marks sum to 80 .

Question 1: (20 points in 2 parts)

The following analysis uses the familiar 'Vocab' data set, consisting or vocabulary scores obtained in samples of U.S. residents during the years 1974 to 2016, categorized by binary gender (Male and Female) and education (in years).

To make the coefficients easier to manipulate, 'year' has been changed to 'decade' relative to the year 2000 and the vocabulary rating has been multiplied by 100. The estimated coefficients are rounded to one decimal place.

```
library(car)
## Loading required package: carData
Vocab <- within(
    Vocab,
    {
        v100 <- vocabulary * 100
        decade <- (year - 2000)/10
    }
)
head(Vocab)
```



```
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & 170.1 & 7.1209832 & 23.8861214 & \(6.092696 \mathrm{e}-125\) \\
\#\# sexMale & -21.0 & 10.4757949 & -2.0014787 & \(4.534971 \mathrm{e}-02\) \\
\#\# education & 33.2 & 0.5223064 & 63.5065527 & \(0.000000 \mathrm{e}+00\) \\
\#\# decade & 19.4 & 4.9964652 & 3.8841883 & \(1.028900 \mathrm{e}-04\) \\
\#\# sexMale:education & 0.4 & 0.7622630 & 0.5438925 & \(5.865195 \mathrm{e}-01\) \\
\#\# sexMale:decade & -11.6 & 7.2237215 & -1.6084923 & \(1.077378 \mathrm{e}-01\) \\
\#\# education:decade & -2.7 & 0.3798654 & -7.1622069 & \(8.119444 \mathrm{e}-13\) \\
\#\# sexMale:education:decade & 1.3 & 0.5432446 & 2.4382176 & \(1.476558 \mathrm{e}-02\)
\end{tabular}
```

a) (10 points) Using this model, what is the estimated 'gender gap' (Female - Male) in v100' in the year 2000 for individuals with 20 years of education?

But we are ashed for 'Female-Onale' so the answer is $-(.13)=13$
b) (10 points) Using this model is the gender gap in the year 1990 for individuals with 20 years of education getting narrower or getting wider? By how much per decade?
We need the gender gap in the year 1990 to see whether it's + or-,
Using the same formula.

$$
\begin{aligned}
& \text { Gui (Pal e-Female) } \\
&=-21+0.4 \times \text { Educ - } 11.6 \times \text { decade } \\
&+1.3 \times \text { Educ } \times \text { decade } \\
&=-21+0.4 \times 20-11.6 \times(-1) \\
&+1.3 \times 20 \times(-1) \\
&=-21+8+11.6-26 \\
&=-27.4
\end{aligned}
$$

How is it changing? Ta he derivative W.M.T. Tine:

$$
\begin{aligned}
\frac{\partial^{2} E(y)}{\partial \text { Sermale } 2 \text { Decade }}= & -115.6+1.3 \times \text { Educ }=-11.6+1.3 \times 20 \\
& =-11.6+26=14.4 \quad \text { contd }
\end{aligned}
$$

So it is getting less negative
\therefore narrowing.

Question 2: (10 points)
Suppose you are investigating the relationships between a variable Y and two possible predictors X and Z. Is it feasible for an observation to have relatively low leverage in each of the regressions on X and on Z, but to have high leverage in the multiple regression of Y on both X and Z ? Using what you know about leverage and influence discuss either why this is not feasible, or, if it is feasible, under what conditions would it be expected to happen.
Sewerage distance, 1 . A point in $x, 2$ space would have low leverage if it has relalivety small \triangle w.r.t. $x \times 2$ separately. At can have a large Δ w.r.t $(x, 2)$ together il x, z are highly coneletad, es.

You may continue your answer on this side.

Question 3: (10 points)

Consider the following (now very familiar) model regressing income (in $1,000 \mathrm{~s}$ of dollars) on years of education in three types of occupations: bc: blue collar, wc: white collar, and prof: professional.

The coefficients have been rounded for ease of calculation.

```
library(car)
head(Prestige)
\begin{tabular}{lrrrrr} 
\#\# & education & income & women & prestige & census type \\
\#\# gov.administrators & 13.11 & 12351 & 11.16 & 68.8 & 1113 prof \\
\#\# general.managers & 12.26 & 25879 & 4.02 & 69.1 & 1130 prof \\
\#\# accountants & 12.77 & 9271 & 15.70 & 63.4 & 1171 prof \\
\#\# purchasing.officers & 11.42 & 8865 & 9.11 & 56.8 & 1175 prof \\
\#\# chemists & 14.62 & 8403 & 11.68 & 73.5 & 2111 prof \\
\#\# physicists & 15.64 & 11030 & 5.13 & 77.6 & 2113 prof
\end{tabular}
d <- na.omit(Prestige)
d$type <- factor(d$type)
d$inc <- d$income/1000 # income in 1,000s of dollars
table(d$type)
##
## bc prof wc
## 44 31 23
fit <- lm(inc ~ type * education + I(education^2), d)
out <- summary(fit)
out$coefficients <- round(out$coefficients) # to make things easier
out$coefficients
```

\#\#	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$	
\#\# (Intercept)	36	16	2	0
\#\# typeprof	58	26	2	0
\#\# typewc	28	13	2	0
\#\# education	-8	4	-2	0
\#\# I (educatio n-2)	1	0	2	0
\#\# typeprof:education	-5	2	-2	0
\#\# typewc:education	-3	1	-2	0

The three types of occupations are 'blue collar' (bc), 'white collar' (wc), and professional (prof).
You are a statistical consultant discussing this analysis with a client who tells you that your results don't make sense.

The negative coefficient for education says that predicted income is lower as education increases and the negative coefficient for 'typeprof:education' says that the change in income associated with additional education is lower for professional occupations than it is for blue collar occupations.

Clearly explain the interpretation of this output for your client. Take into account that the average years of education required for professional occupations is greater than for 'white collar' and 'blue collar' occupations. (Continue your answer on the back of this page.)
The presided income for professional occupation is $36+58-8$ educ +1 educ $^{2}-5 \times$ education
and for a blue collar occupation $36-8 e d u c t 1 \times$ educ ${ }^{2}$

An extra year of education is associated with change of
$-8+2 x e d u c-5$ for "prof"
and $-8+2$ edh for $b c$
You may continue your answer on this side.
but if Typical educ fer $b c$ is 10 and 15 for "prof", then the value of an extra year would be

$$
-8 \times 2 \times 10-5=7 \text { for ' } b c^{\prime}
$$

and $-8 \times 2 \times 15=22$ for 'prop.'

Question 4: (20 points)

Consider the following confidence ellipses for a linear model regressing Y on X and Z. Consider three possible models for a least-squares regression of Y on X and Z :

1. $E(Y)=\beta_{0}+\beta_{X} X+\beta_{Z} Z$
2. $E(Y)=\gamma_{02}+\gamma_{X} X$
3. $E(Y)=\gamma_{03}+\gamma_{Z} Z$

The following are confidence ellipses for model 1 . The outer ellipse is a joint 95% confidence ellipse for the vector $\left(\beta_{X}, \beta_{Z}\right)$ and the inner ellipse is scaled so that its orthogonal projections onto the axes produces 95% confidence intervals.

Can you determine the outcome of the following tests? If so what would be the outcome of 5% tests? Discuss briefly why. (The alternative in each case is the negation of H_{0}). Show the basis of your reasoning using a diagram or other explanation.
a) $H_{0}: \beta_{X}=\beta_{Z}=0$
Reject:
$(0,0) \notin$ Outerellipce
b) $H_{0}: \beta_{X}=0$
$0 \notin C I$ fer β_{x}
c) $H_{0}: \beta_{Z}=0$
Report
$0 \notin C I$ for β_{2}
d) $H_{0}: \gamma_{X}=0$
$0 \in C I$ fur γx
e) $H_{0}: \gamma_{Z}=0$ accept $0 \in C T$ for γ_{2}
f) $H_{0}: \beta_{X}=\beta_{Z}$
Reject $0 \notin C I$ for $\beta_{x}-\beta_{2}$
g) $H_{0}: \beta_{X}+\beta_{Z}=0$ Accept $O \in C I$ fer $\beta_{x}+\beta_{2}$

You may continue your answer on this side.

Question 5: (10 points)
Discuss the following statement: "To choose variables in a multiple regression, you can start by testing one variable at a time and only add the variables that are significant."
The above is a counterexample showing how a model that is significant for β_{x}, β_{2} and $\left(\beta_{x}, \beta_{2}\right)$ jointly may not show a significant relationship with
X or 2 individually, so That a forward stepwise pweedure
would stap with a model containing only the intercegato
Otter issues:

- Af a model vicludes interactions and polynomial powers, stepurie selection will not respect the PCM.
- of the purpose in causal inference, stepwise selection is likely to include mechations and fail to include needed confounders.

You may continue your answer on this side.

Question 6: (10 points)
Consider a model regressing Y (e.g. math achievement) on X (e.g. SES) in J schools identified by a categorical variable G . Let Xg be a 'contextual variable' that is the mean of X within each school and let Xd be the 'centered-within-groups' version of X , i.e. $\mathrm{Xd}=\mathrm{X}-\mathrm{Xg}$.
Consider the following two models:
1)

$$
E(\mathrm{Y})=\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2} \mathrm{Xg}
$$

2)

$$
E(\mathrm{Y})=\psi_{0}+\psi_{1} \mathrm{Xd}+\psi_{2} \mathrm{Xg}
$$

Show that these models are equivalent.
The models are equivalent because each column of each X matrix is a linear combination of columns of the others matrix.

- The inter copt appears in bott models
- For the second column me have

- The thirst column istre same un both model
\therefore models are equivalent

You may continue your answer on this side.

