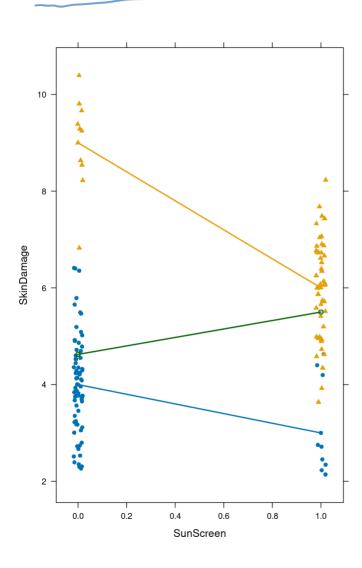

```
Call:
```

```
lm(formula = SkinDamage ~ SunScreen * SunExposure, data = dd)
```

Call:


lm(formula = SkinDamage ~ SunScreen, data = dd)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6250 0.1973 23.442 <2e-16 ***
SunScreen 0.8750 0.3014 2.903 0.0043 **

Sun Exposure

What else would we want to estimate?

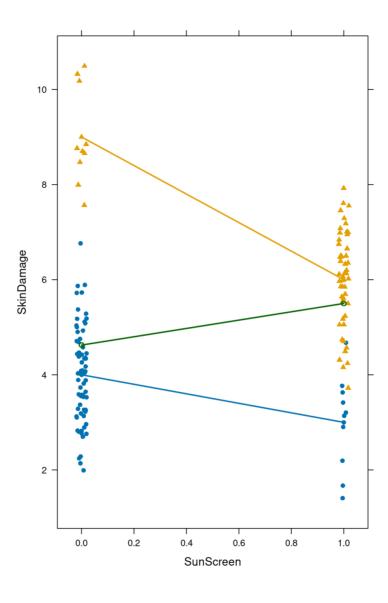
- Conditional effects

 when Z=0, Z=1• conditional effects

 of Zwhen X=0, X=1
- e différence in conditional effects of X
- · différence in · · · · Z
- · marginal effect of X
- . marginal effect of Z

What does the output give us?

Call:


lm(formula = SkinDamage ~ SunScreen * SunExposure, data = dd)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        4.0000
                                   0.1195
                                           33.466 < 2e-16 ***
                                                   0.00365 **
SunScreen
                       -1.0000
                                   0.3381
                                           -2.958
SunExposure
                        4.0000
                                   0.3381 11.832
                                                   < 2e-16 ***
SunScreen:SunExposure
                      -1.0000
                                           -2.066
                                                   0.04073 *
                                   0.4840
```

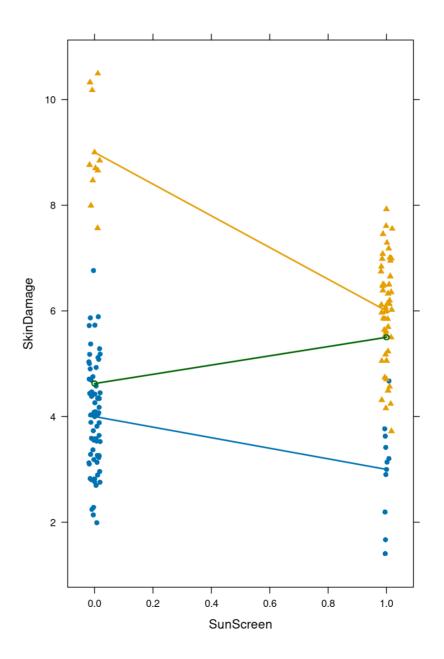
Note: We can calculate

$$\beta_{X1Z=0} = \beta_{X1Z=0} = \beta_{Z1X=0} = \beta_{Z1X=1}$$

But: Can't get CIsor p-values
. 11 " marginal effects Two ways to get conditional effect CIs & P-values 1) Refit model with different - but equivalent 2) Vise function that estimates wald tests.

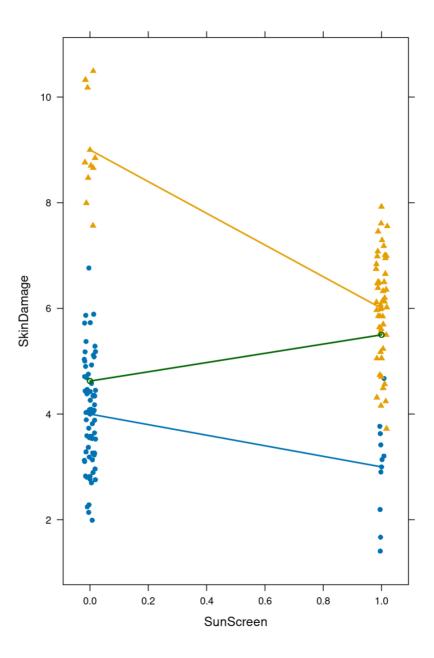
Call:

```
lm(formula = SkinDamage ~ factor(SunExposure)/SunScreen - 1,
    data = dd)
```


Coefficients:

Call:

```
lm(formula = SkinDamage ~ factor(SunScreen)/SunExposure - 1,
    data = dd)
```


Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
factor(SunScreen)0	4.0000	0.1195	33.466	< 2e-16 ***
factor(SunScreen)1	3.0000	0.3162	9.487	< 2e-16 ***
<pre>factor(SunScreen)0:SunExposure</pre>	5.0000	0.3381	14.790	< 2e-16 ***
<pre>factor(SunScreen)1:SunExposure</pre>	3.0000	0.3464	8.660	1.21e-14 ***


```
fit <- lm(SkinDamage ~ SunScreen * SunExposure, dd)</pre>
summary(fit)
L <- rbind(
  "Effect of X | Z = 0" = c(0, 1, 0, 0),
  "Effect of X | Z = 1" = c(0, 1, 0, 1),
  "Effect of Z \mid X = 0" = C(0, 0, 1, 0).
  "Effect of X | Z = 0" = c(0, 0, 1, 1),
  E(Y \mid X = 1, Z = 1) = c(1, 1, 1, 1)  # you can keep going
library(spida2)
wald(fit, L) # overall test is an F-test for all hypotheses = 0
```

```
numDF denDF F-value p-value
     4 136
                 955 < .00001
                   Estimate Std.Error DF t-value p-value Lower 0.95 Upper 0.95
Effect of X \mid Z = 0 - 1
                            0.338062 136 -2.958040 0.00365 -1.668538 -0.331462
Effect of X \mid Z = 1 - 3
                            0.346410 136 -8.660254 <.00001 -3.685047 -2.314953
Effect of Z \mid X = 0 5
                            0.338062 136 14.790199 <.00001 4.331462
                                                                       5.668538
Effect of X \mid Z = 0 3 0.346410 136 8.660254 < .00001 2.314953
                                                                       3.685047
E(Y \mid X = 1, Z = 1) 6
                            0.141421 136 42.426407 < .00001 5.720331
                                                                       6.279669
```


10 -	*					
8 -	A					<u>^</u>
SkinDamage 9	•					14444 WA
						£
4 -	4. 2. 8. 4. 4. 4. 4. 4.					•
2 -	•					•
	0.0	0.2	0.4 SunSe	0.6 creen	0.8	1.0

The Liu-Meng Diagram: The main effect of Z

You could always flip the roles of X and Z and draw a Paik-Agresti diagram for the main effect of Z.

But that wouldn't show the two in the same diagram.

The Liu-Meng diagram (personal communication over lunch with Xiao-Li Meng, Liu was his undergraduate student who worked on the idea with Xiao-Li. Unfortunately I don't know Liu's given name but someday I must find out.

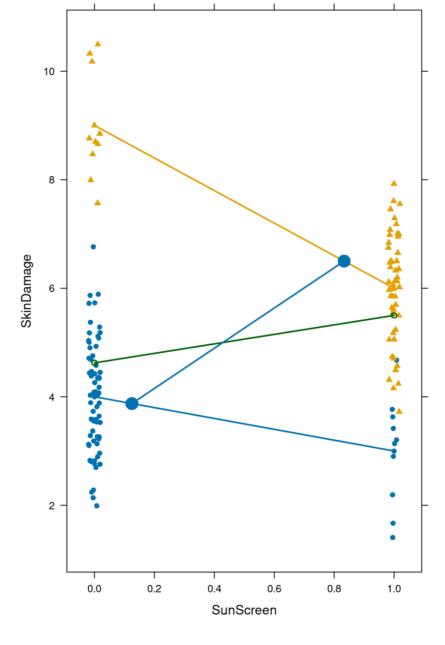
- 1) Plot the points:
 - (mean of X, mean of Y) |Z| = 0
 - this is a weighted mean of the
 - * (mean of X, mean of Y) |Z = 0, X = 0, and
 - * (mean of X, mean of Y) |Z = 0, X = 1 Thus, it lies in the convex hull of these two points, which is the line joining the two points!
 - (mean of X, mean of Y) |Z| = 1
 - this is a weighted mean of the
 - * (mean of X, mean of Y) |Z = 1, X = 0, and
 - * (mean of X, mean of Y) |Z = 1, X = 1 Similarly, it also on the line joining these two points.
 - The vertical distance between these two points is the main effect of Z on Y.
 - The horizontal distance between these two points is the main effect of Z on X.

Small project: Write a function that produces a Liu-Meng diagram.

R makes complicated things easy and sometimes easy things complicated:

The Liu-Meng Diagram: The main effect of Z

You could always flip the roles of X and Z and draw a Paik-Agresti diagram for the main effect of Z.


But that wouldn't show the two in the same diagram.

The Liu-Meng diagram (personal communication over lunch with Xiao-Li Meng, Liu was his undergraduate student who worked on the idea with Xiao-Li. Unfortunately I don't know Liu's given name but someday I must find out.

- 1) Plot the points:
 - (mean of X, mean of Y) |Z = 0
 - this is a weighted mean of the
 - * (mean of X, mean of Y) |Z = 0, X = 0, and
 - * (mean of X, mean of Y) Z = 0, X = 1 Thus, it lies in the convex hull of these two points, which is the line joining the two points!
 - (mean of X, mean of Y) |Z = 1|
 - this is a weighted mean of the
 - * (mean of X, mean of Y) |Z = 1, X = 0, and
 - * (mean of X, mean of Y) Z = 1, Z = 1 Similarly, it also on the line joining these two points
 - The vertical distance between these two points is the main effect of Z on Y.
 - The horizontal distance between these two points is the main effect of Z on X.

Small project: Write a function that produces a Liu-Meng diagram.

R makes complicated things easy and sometimes easy things complicated:

amplications of P-A + L-X1 diagrams Start with conditional effects Draw the Traperoid of Means - Interaction - Alreal - Removable

· diff slopes a Rame Slopes · not removable - Shows "interaction" can mean many different things - not enough to just say "there's intersection" - you must display and describe the response function.

When can we have Simpson's Paradox SPx = marginal has different sign than (all What is

Can only have SPx for I if there's a horizontal separation of the Lop and bottom edges of the ToM & slopes in some What about SIX for Z

Tale away: Can have SPx for But if Conditionals in same chirection then must have the possibility of SPx for at least one except in special case; where diagonally opposite points have same Y.